Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/justsecret123/one-piece-characters-detector

An object detector trained with a Kaggle GPU, using Tensorflow and a fine-tuned ssd resnet50.
https://github.com/justsecret123/one-piece-characters-detector

artificial-intelligence computer-vision convolutional-neural-networks deep-learning deep-neural-networks docker fine-tuning jupyter kaggle kaggle-dataset matplotlib numpy object-detection python single-shot-detector tensorflow tensorflow-object-detection tensorflow-serving transfer-learning

Last synced: about 2 months ago
JSON representation

An object detector trained with a Kaggle GPU, using Tensorflow and a fine-tuned ssd resnet50.

Awesome Lists containing this project

README

        

# One Piece characters detector ![Language_support](https://img.shields.io/pypi/pyversions/Tensorflow) ![Last_commit](https://img.shields.io/github/last-commit/JustSecret123/Human-pose-estimation) ![Workflow](https://img.shields.io/github/workflow/status/JustSecret123/Human-pose-estimation/Pylint/main) ![Tensorflow_version](https://img.shields.io/badge/Tensorflow%20version-2.6.2-orange)

An object detector trained with a Kaggle GPU on One Piece images, using Tensorflow and a fine-tuned ssd resnet50.

> **Deployed on my [personal Docker Hub repository](https://hub.docker.com/repository/docker/ibrahimserouis/my-tensorflow-models)

> **Kaggle Notebook link: [Kaggle notebook](https://www.kaggle.com/ibrahimserouis99/custom-object-detector-one-piece-characters)

> **One Piece Detector SavedModel : [Drive](https://drive.google.com/drive/folders/11FVvs6Z7yRLAlJgoclrUEnzlsX8uzfkB?usp=sharing)



# Model and configuration summary

- Class count : 1
- Labels : ["character"]
- Model type : detection
- Base model : ssd_resnet50_v1_fpn_640x640_coco17_tpu-8

# Results : screenshots

## Sample video

![Test1](/Screenshots/results_detector_1.gif)

## Test with 4 characters

![First test](Screenshots/Results_4_characters.png)

# Useful links

## How to run inferences on a video : [commnand line runner](https://github.com/Justsecret123/One-Piece-characters-detector/blob/main/Scripts/op_detector_video.py)

> Note : Before running the script, you must first download the One Piece object detector model [here](https://drive.google.com/drive/folders/11FVvs6Z7yRLAlJgoclrUEnzlsX8uzfkB?usp=sharing).

### Args
![Command line runner](Screenshots/command_line_video_args.PNG)

### Execution example
![Execution](/Screenshots/command_line_runner.PNG)

Check the [sample command for executing the command line runner](/Scripts/op_detector_video.bat)

## Tensorflow Serving container test script
- [On GitHub](Scripts/Prediction_OP_detection_model.py)
- [Label map](Scripts/tf_label_map.pbtxt)

## Training notebook

- [Kaggle](https://www.kaggle.com/ibrahimserouis99/custom-object-detector-one-piece-characters)
- [GitHub](Notebooks/custom-object-detector-one-piece-characters.ipynb)

## How to concatenate mutliple TFRecord files into the Training and Validation sets

- [Kaggle](https://www.kaggle.com/ibrahimserouis99/generate-training-and-validation-records)
- [GitHub](Notebooks/generate-the-training-and-validation-tfrecords.ipynb)

## Training pipeline configuration file : [Here](Config/pipeline_batch_size_8.config)

## Prerequisites

- Python 3.7 or higher
- Tensorflow 2.6 or higher
- Tensorflow Object Detection API
- NumPy
- Matplotlib