Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/jvdd/argminmax

Efficient argmin & argmax
https://github.com/jvdd/argminmax

argmax argmin avx2 avx512 ndarray neon numpy rust rust-lang simd sse

Last synced: 22 days ago
JSON representation

Efficient argmin & argmax

Awesome Lists containing this project

README

        

# ArgMinMax









rust docs


Build and test

> Efficient argmin & argmax (in 1 function) with SIMD (SSE, AVX(2), AVX5121, NEON1) ⚡

🚀 The functions are generic over the type of the array, so it can be used on `&[T]` or `Vec` where `T` can be `f16`2, `f32`2, `f64`3, `i8`, `i16`, `i32`, `i64`, `u8`, `u16`, `u32`, `u64`.

🤝 The trait is implemented for [`slice`](https://doc.rust-lang.org/std/primitive.slice.html), [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html), 1D [`ndarray::ArrayBase`](https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html)4, apache [`arrow::PrimitiveArray`](https://docs.rs/arrow/latest/arrow/array/struct.PrimitiveArray.html)5 and [`arrow2::PrimitiveArray`](https://docs.rs/arrow2/latest/arrow2/array/struct.PrimitiveArray.html)6.

⚡ **Runtime CPU feature detection** is used to select the most efficient implementation for the current CPU. This means that the same binary can be used on different CPUs without recompilation.

👀 The SIMD implementation contains **no if checks**, ensuring that the runtime of the function is independent of the input data its order (best-case = worst-case = average-case).

🪄 **Efficient support for f16 and uints**: through (bijective aka symmetric) bitwise operations, f16 (optional1) and uints are converted to ordered integers, allowing to use integer SIMD instructions.

> 1 for AVX512 and most of NEON you should enable the (default) `"nightly_simd"` feature (requires nightly Rust).
> 2 for f16 you should enable the `"half"` feature.
> 3 for f32 and f64 you should enable the (default) `"float"` feature.
> 4 for ndarray::ArrayBase you should enable the `"ndarray"` feature.
> 5 for arrow::PrimitiveArray you should enable the `"arrow"` feature.
> 6 for arrow2::PrimitiveArray you should enable the `"arrow2"` feature.

## Installing

Add the following to your `Cargo.toml`:

```toml
[dependencies]
argminmax = "0.6.1"
```

## Example usage

```rust
use argminmax::ArgMinMax; // import trait

let arr: Vec = (0..200_000).collect(); // create a vector

let (min, max) = arr.argminmax(); // apply extension

println!("min: {}, max: {}", min, max);
println!("arr[min]: {}, arr[max]: {}", arr[min], arr[max]);
```

## Traits

### `ArgMinMax`

Implemented for `ints`, `uints`, and `floats` (if `"float"` feature enabled).

Provides the following functions:
- `argminmax`: returns the index of the minimum and maximum element in the array.

When dealing with NaNs, `ArgMinMax` its functions ignore NaNs. For more info see [Limitations](#limitations).

### `NaNArgMinMax`

Implemented for `floats` (if `"float"` feature enabled).

Provides the following functions:
- `nanargminmax`: returns the index of the minimum and maximum element in the array.

When dealing with NaNs, `NaNArgMinMax` its functions return the first NaN its index. For more info see [Limitations](#limitations).

> Tip 💡: if you know that there are no NaNs in your the array, we advise you to use `ArgMinMax` as this should be 5-30% faster than `NaNArgMinMax`.

## Features
- [default] **"nightly_simd"**: enables the use of non-stable SIMD intrinsics (`AVX512` and most of `NEON`), which are only available on nightly Rust.
- [default] **"float"**: support `f32` and `f64` argminmax (uses NaN-handling - [see below](#limitations)).
- **"half"**: support `f16` argminmax (through using the [`half`](https://docs.rs/half/latest/half) crate).
- **"ndarray"**: add `ArgMinMax` trait to [`ndarray`](https://docs.rs/ndarray/latest/ndarray) its `Array1` & `ArrayView1`.
- **"arrow"**: add `ArgMinMax` trait to [`arrow`](https://docs.rs/arrow/latest/arrow) its `PrimitiveArray`.

## Benchmarks

Benchmarks on my laptop *(AMD Ryzen 7 4800U, 1.8 GHz, 16GB RAM)* using [criterion](https://github.com/bheisler/criterion.rs) show that the function is 3-20x faster than the scalar implementation (depending of data type).

See `/benches/results`.

Run the benchmarks yourself with the following command:
```bash
cargo bench --quiet --message-format=short --features half | grep "time:"
```

## Tests

To run the tests use the following command:
```bash
cargo test --message-format=short --all-features
```

## Limitations

The library handles NaNs! 🚀

Some (minor) limitations:
- `ArgMinMax` its functions ignores NaN values.
- ❗ When the array contains exclusively NaNs and/or infinities unexpected behaviour can occur (index 0 is returned).
- `NaNArgMinMax` its functions returns the first NaN its index (if any present).
- ❗ When multiple bit-representations for NaNs are used, no guarantee is made that the first NaN is returned.

---

## Acknowledgements

Some parts of this library are inspired by the great work of [minimalrust](https://github.com/minimalrust)'s [argmm](https://github.com/minimalrust/argmm) project.