Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kahsolt/adiabatic-linear-solver-qpanda
Block Encodings & Quantum Discrete Adiabatic Linear-systems Solver implemented in QPanda (C++)
https://github.com/kahsolt/adiabatic-linear-solver-qpanda
adiabatic-linear-solver adiabatic-quantum-computing contest-solution pyqpanda qpanda quantum-computing
Last synced: about 2 months ago
JSON representation
Block Encodings & Quantum Discrete Adiabatic Linear-systems Solver implemented in QPanda (C++)
- Host: GitHub
- URL: https://github.com/kahsolt/adiabatic-linear-solver-qpanda
- Owner: Kahsolt
- License: mit
- Created: 2024-06-03T03:15:01.000Z (7 months ago)
- Default Branch: master
- Last Pushed: 2024-07-15T07:50:48.000Z (5 months ago)
- Last Synced: 2024-07-15T10:39:19.568Z (5 months ago)
- Topics: adiabatic-linear-solver, adiabatic-quantum-computing, contest-solution, pyqpanda, qpanda, quantum-computing
- Language: Python
- Homepage:
- Size: 42.2 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Adiabatic-Linear-Solver-QPanda
Block Encodings & Quantum Discrete Adiabatic Linear-systems Solver implemented in QPanda (C++)
第三届CCF“司南杯”量子计算编程挑战赛-通用赛道 决赛----
比赛页面: [第三届CCF“司南杯”量子计算编程挑战赛通用赛道](https://learn.originqc.com.cn/zh/contest/list/34/contest:introduction)
队名: 我吃两个
得分: 85.67 (复赛) / 81.67 (答辩)
获奖: 三等奖 (wtf???👉 初赛的 repo 在这里:[CCF-3rd-Pilot-Cup-first-stage](https://github.com/Kahsolt/CCF-3rd-Pilot-Cup-first-stage)
### Quickstart
- `git clone https://github.com/Kahsolt/QLSDA-QPanda`
- add `--recursive` if you want QPanda as well
- install the C++ version [QPanda](https://github.com/OriginQ/QPanda-2), building from source... 😈
- modify `QPANDA_INSTALL_DIR` in [CMakeLists.txt](./CMakeLists.txt) according to your installation
- just run `make` or `bash ./run.sh` 😀🎉This is the demo run for final linear solver solution:
![demo](img/LS_demo.png)
ℹ Note that there are **two** folders containing source files:
- [/playground](/playground): pennylane tutorials, pure numerical simulations for quick idea verification, debugging scipts
- [/src](/src): the real quantum logical circuit implementation in QPanda (C++) and PyQPanda (python)### Implementation
⚪ block encoding
👉 详细文档参见 [BlockEncoding.md](doc/BlockEncoding.md)
😈 BlockEncoding 可能是一个非常危险的突破性技术:以后人们只是基于线性代数去设计算法,然后调用 `block_encode + matrix_decompose` 来在量子计算机上运行一切程序| Method | restriction | gate implementation | sub-normalizer | ancilla qubits | complex-value support |
| :-: | :-: | :-: | :-: | :-: | :-: |
| [QSVT-like](https://pennylane.ai/qml/demos/tutorial_intro_qsvt/) | $ σ_{max} = \|\|A\|\|_2 \leq 1 $ | use matrix_decompose methods (cannot generally implement with $ \mathcal{O}(poly(n)) $ gates) | - | 1 | ✅ |
| [LCU](https://pennylane.ai/qml/demos/tutorial_lcu_blockencoding/) | $ A = \sum\limits_{k=0}^{N-1} \alpha_k U_k $ | $ U_A = \mathrm{PREP}^\dagger \cdot \mathrm{SEL} \cdot \mathrm{PREP} $ | $ 1 / \sum_k \|\alpha_k\| $ | $ \lceil log_2(k) \rceil $ | ❌ |
| [ARCSIN](https://arxiv.org/abs/2402.17529) | $ d $-sparse $, \|a_{ij}\| \le 1 $ | $ U_A = (I_1 \otimes H^{\otimes n} \otimes I_n) (I_1 \otimes \mathrm{SWAP}) O_A (X \otimes H^{\otimes n} \otimes I_n) $ | $ 1 / 2^n $ | $ n + 1 $ | ✅ |
| [FABLE](https://arxiv.org/abs/2205.00081) | $ d $-sparse $, \|a_{ij}\| \le 1 $ | $ U_A = (I_1 \otimes H^{\otimes n} \otimes I_n) (I_1 \otimes \mathrm{SWAP}) O_A (I_1 \otimes H^{\otimes n} \otimes I_n) $ | $ 1 / 2^n $ | $ n + 1 $ | ❌ || Precision Check | Generated Circuit |
| :-: | :-: |
| ![demo](img/BE_unittest.png) | ![demo](img/BE_demo.png) |⚪ adiabatic-inspired linear system solver
👉 详细文档参见 [LinearSolver.md](doc/LinearSolver.md)
| Method | year | sched func $ f(s) $ | time complexity | query complexity (EF paper listed) | query complexity (QDA paper listed) |
| :-: | :-: | :-: | :-: | :-: | :-: |
| [RM (algo-1)](https://arxiv.org/abs/1805.10549) | 2018 | $ \text{v-func} $ | $ \mathcal{O}(\kappa^2 \mathrm{log}(\kappa) / \epsilon) $ | $ \mathcal{O}(\kappa / \epsilon) $ | |
| [RM (algo-2)](https://arxiv.org/abs/1805.10549) | 2018 | $ \text{v-func} $ | $ \mathcal{O}(\kappa \mathrm{log}(\kappa) / \epsilon) $ | $ \mathcal{O}(\kappa / \epsilon) $ | $ \mathcal{O}(\kappa \mathrm{log}(\kappa) / \epsilon) $ |
| [vanilla AQC](https://arxiv.org/abs/1909.05500) | 2019 | $ \text{linear} $ | $ \mathcal{O}(\kappa^3 / \epsilon) $ | $ \mathcal{O}(\kappa^2 / \epsilon) $ | |
| [AQC(P)](https://arxiv.org/abs/1909.05500) | 2019 | $ \text{poly} $ | $ \mathcal{O}(\kappa / \epsilon) \sim \mathcal{O}(\kappa \mathrm{log}(\kappa) / \epsilon) $ | $ \mathcal{O}(\kappa \mathrm{log}(\kappa) \mathrm{loglog}(\kappa)) $ for $ \mathcal{O}(1) $ precision | |
| [AQC(EXP)](https://arxiv.org/abs/1909.05500) | 2019 | $ \text{exp} $ | $ \mathcal{O}(\kappa \mathrm{log}^2(\kappa) \mathrm{log}^4(\mathrm{log}(\kappa)/\epsilon)) $ | $ \mathcal{O}(\kappa \mathrm{polylog}(1 / \epsilon)) $ | $ \mathcal{O}(\kappa \mathrm{polylog}(\kappa / \epsilon)) $ |
| [EF](https://arxiv.org/abs/1910.14596) (partial) | 2019 | $ \text{poly} $ | | $ \mathcal{O}(\kappa \mathrm{log}(1 / \epsilon)) $ | $ \mathcal{O}(\kappa \mathrm{log}(\kappa / \epsilon)) $ |
| [QDA](https://arxiv.org/abs/2111.08152) (partial) | 2021 | $ \text{poly} $ | | | $ \mathcal{O}(\kappa \mathrm{log}(1 / \epsilon)) $ |
| [EQLS](https://arxiv.org/abs/2305.11352) (partial) | 2023 | $ \text{v-func} $ | $ \mathcal{O}(\kappa \mathrm{log}(\kappa / \epsilon)) $ | | |ℹ Note that $ \mathcal{\Omega}(\kappa \mathrm{log}(1 / \epsilon)) $ is the theoretical lower bound for sparse QLSP
> Obviously there is an argument between QDA and EF, that EF overlooked a factor by $ \mathrm{log}(k) $? 🤔
> - EF := AQC(P) + EF = $ \mathcal{O}(\kappa \mathrm{log}(\kappa) \mathrm{loglog}(\kappa)) + \mathcal{O}(\kappa \mathrm{log}(1 / \epsilon)) $
> - QDA := QWalk + EF = $ \mathcal{O}(\kappa) + \mathcal{O}(\kappa \mathrm{log}(1 / \epsilon)) $
> - EQLS: = RM + EF
> OK then, QDA might be right: EF forgot to count for its AQC(p) part### references
- dev
- QPanda (C++): [https://github.com/OriginQ/QPanda-2](https://github.com/OriginQ/QPanda-2)
- Eigen lib: [https://eigen.tuxfamily.org/dox/index.html](https://eigen.tuxfamily.org/dox/index.html)
- pennylane: [https://github.com/PennyLaneAI/pennylane](https://github.com/PennyLaneAI/pennylane)
- thesis
- [1] Optimal scaling quantum linear systems solver via discrete adiabatic theorem: [https://arxiv.org/abs/2111.08152](https://arxiv.org/abs/2111.08152)
- report lecture (2022): [https://www.youtube.com/watch?v=qEA37SfxPEs](https://www.youtube.com/watch?v=qEA37SfxPEs)
- [3] Quantum algorithm for systems of linear equations with exponentially improved dependence on precision: [https://arxiv.org/abs/1511.02306](https://arxiv.org/abs/1511.02306)
- report lecture (2015): [https://www.youtube.com/watch?v=IdCCn2X5dW4](https://www.youtube.com/watch?v=IdCCn2X5dW4)
- [4] Hamiltonian Simulation by Qubitization: [https://arxiv.org/abs/1610.06546](https://arxiv.org/abs/1610.06546)
- [5] Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm: [https://arxiv.org/abs/1909.05500](https://arxiv.org/abs/1909.05500)
- report lecture (2020): [https://www.youtube.com/watch?v=RiRaHGEvlZE](https://www.youtube.com/watch?v=RiRaHGEvlZE)
- The discrete adiabatic quantum linear system solver has lower constant factors than the randomised adiabatic solver: [https://arxiv.org/abs/2312.07690](https://arxiv.org/abs/2312.07690)
- report lecture (2024): [https://www.youtube.com/watch?v=WfByvOf3N3Y](https://www.youtube.com/watch?v=WfByvOf3N3Y)
- Quantum Computation by Adiabatic Evolution: [https://arxiv.org/abs/quant-ph/0001106](https://arxiv.org/abs/quant-ph/0001106)
- Quantum state preparation by phase randomization: [https://arxiv.org/abs/0903.1652](https://arxiv.org/abs/0903.1652)
- Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing: [https://arxiv.org/abs/1805.10549](https://arxiv.org/abs/1805.10549)
- Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems: [https://arxiv.org/abs/1910.14596](https://arxiv.org/abs/1910.14596)
- Efficient quantum linear solver algorithm with detailed running costs: [https://arxiv.org/abs/2305.11352](https://arxiv.org/abs/2305.11352)
- Block Encoding
- pennylane tutorials
- Intro to QSVT: [https://pennylane.ai/qml/demos/tutorial_intro_qsvt/](https://pennylane.ai/qml/demos/tutorial_intro_qsvt/)
- QSVT in Practice: [https://pennylane.ai/qml/demos/tutorial_apply_qsvt/](https://pennylane.ai/qml/demos/tutorial_apply_qsvt/)
- Linear combination of unitaries and block encodings: [https://pennylane.ai/qml/demos/tutorial_lcu_blockencoding/](https://pennylane.ai/qml/demos/tutorial_lcu_blockencoding/)
- Block encoding with matrix access oracles: [https://pennylane.ai/qml/demos/tutorial_block_encoding/](https://pennylane.ai/qml/demos/tutorial_block_encoding/)
- Lecture - The block-encoding: [https://www.ias.edu/sites/default/files/Tang%20qsvt_lect_1.pdf](https://www.ias.edu/sites/default/files/Tang%20qsvt_lect_1.pdf)
- Hamiltonian simulation with nearly optimal dependence on all parameters: [https://arxiv.org/abs/1501.01715](https://arxiv.org/abs/1501.01715)
- Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices: [https://arxiv.org/abs/2203.10236](https://arxiv.org/abs/2203.10236)
- FABLE: Fast Approximate Quantum Circuits for Block-Encodings: [https://arxiv.org/abs/2205.00081](https://arxiv.org/abs/2205.00081)----
by Armit
2024/05/13