Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kahsolt/emotionroi-ex
Unofficial implementation of the EmotionROI essay and extended applications
https://github.com/kahsolt/emotionroi-ex
emotion-analysis emotion-classification region-of-interest
Last synced: about 4 hours ago
JSON representation
Unofficial implementation of the EmotionROI essay and extended applications
- Host: GitHub
- URL: https://github.com/kahsolt/emotionroi-ex
- Owner: Kahsolt
- License: mit
- Created: 2023-12-27T03:44:26.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2024-04-20T06:41:37.000Z (9 months ago)
- Last Synced: 2024-11-09T07:47:15.970Z (about 2 months ago)
- Topics: emotion-analysis, emotion-classification, region-of-interest
- Language: Python
- Homepage:
- Size: 2.07 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# EmotionROI-ex
Unofficial implementation of the EmotionROI essay and extended applications
----
ℹ The pretrained weights can be found [here](https://pan.quark.cn/s/13e59e043b1c) :)
Reproduction the **FCNEL** model in essay [WHERE DO EMOTIONS COME FROM? PREDICTING THE EMOTION STIMULI MAP](http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/ICIP16_EmotionROI.pdf), and extended applications.
The results reported in the EmotionROI/FCNEL essay:
![FCNEL](img/FCNEL.png)
### Reproduce FCNEL for ROI prediction
⚠ Can NOT reproduce essay results exactly, here're the implementation differences:
- The essay uses `FCN-32s + AlexNet`, we use `FCN-8s + ResNet50`
- The essay uses `lr=1e-8` to refine `20` epochs, which is two small and doesn't have any effect in our setting, we instead use `lr=1e-2` to train `100` epochs with `CosineAnnealingLR`
- The essay might use the default `Bilinear` for output upsacling, we instead use `Nearest-Exact` to simulate `FCN-32s` resolution![FCNEL-infer](img/FCNEL-infer.png)
![FCNEL-loss](img/FCNEL-loss.png)### Modifyied EmoFCNEL for ROI prediction with emotion condition
ℹ Predict ROI with any emotion label (except for `sadness`) results into nearly the same output...
ℹ The ROI annotations are probably NOT related to certain emotion, but only indicates **human attention focus**![EmoFCNEL-infer](img/EmoFCNEL-infer.png)
![EmoFCNEL-loss](img/EmoFCNEL-loss.png)
![EmoFCNEL-embed](img/EmoFCNEL-embed.png)### Predict emotion directly from ROI annotation
⚠ Mission impossible :(
| Model | Train acc. | Test acc. |
| :-: | :-: | :-: |
| Resnet50 | 24.098% | 17.172% |![RIO_clf](img/RIO_clf-acc.png)
### references
- essay
- info page: [http://chenlab.ece.cornell.edu/publications.html](http://chenlab.ece.cornell.edu/publications.html)
- download link: [http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/ICIP16_EmotionROI.pdf](http://chenlab.ece.cornell.edu/Publication/Kuan-Chuan/ICIP16_EmotionROI.pdf)
- EmotionROI dataset
- info page: [http://chenlab.ece.cornell.edu/downloads.html](http://chenlab.ece.cornell.edu/downloads.html)
- download link: [http://chenlab.ece.cornell.edu/people/kuanchuan/publications/EmotionROI.zip](http://chenlab.ece.cornell.edu/people/kuanchuan/publications/EmotionROI.zip)----
by Armit
2023/12/27