Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kahsolt/iccad-2023-vqe
Quantum Computing for Drug Discovery Challenge at ICCAD 2023
https://github.com/kahsolt/iccad-2023-vqe
contest-solution quantum-computing vqe
Last synced: 5 days ago
JSON representation
Quantum Computing for Drug Discovery Challenge at ICCAD 2023
- Host: GitHub
- URL: https://github.com/kahsolt/iccad-2023-vqe
- Owner: Kahsolt
- License: mit
- Created: 2023-09-12T03:21:34.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-10T12:22:54.000Z (about 1 year ago)
- Last Synced: 2024-11-09T07:47:16.933Z (2 months ago)
- Topics: contest-solution, quantum-computing, vqe
- Language: Python
- Homepage:
- Size: 1.31 MB
- Stars: 1
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ICCAD-2023-VQE
Quantum Computing for Drug Discovery Challenge at ICCAD 2023
----
Contest page: [https://qccontest.github.io/QC-Contest/](https://qccontest.github.io/QC-Contest/)
### How to run?
⚪ install
- better prepare a working Linux system, since [PySCF](https://pyscf.org/) **CANNOT** run on Windows!! :(
- it's also ok to run on Windows, but must use a pre-calculated ham file like [OHhamiltonian.txt](QC-Contest-Demo/Hamiltonian/OHhamiltonian.txt)
- and few features are unavailable, no big matter
- create venv (optional)
- install [Miniconda](https://docs.conda.io/projects/miniconda/en/latest/) latest
- `conda create -n qs`
- `conda activate qs`
- install dependencies `pip install -r requirements.txt`
- if you have CUDA on Linux, one more cmdline: `pip install qiskit-aer-gpu`
- test qiskit installation
- `python _tutorial_qiskit_vqe.py`
- clone the code & data base `git clone https://github.com/qccontest/QC-Contest-Demo`
- test demo code runnable
- `python _test_examplecode.py -T 2`; this might be very **slow**, just be patient :(
- `python _test_NoiseModel_and_SystemModel.py`⚪ run the results for submission
- run jupyter notebook `run_submission.ipynb`
⚪ run development
⚠ for Windows where PySCF is not available, you could **only** run with a pre-calculated ham file
- `python run.py`, the ham will be computed by Qiskit-PySCF (Linux only!)
- `python run.py -H ham_file` to specify an arbitary pre-calculated ham file
- run the contest ham: `python run.py -H txt` or `python run.py -H QC-Contest-Demo\Hamiltonian\OHhamiltonian.txt`
- run the ChemiQ pre-computed ham: `python run.py -H playground\run_chq.ham`
- this ham seems to be inconsist with the `Qiskit-PySCF` analyzed one, with energy-diff approximately right the value of `nuclear_repulsion_energy`
- have no idea about know whether it is a bug or feature :(### references
- Qiskit
- tutorial: [https://qiskit.org/documentation/tutorials.html](https://qiskit.org/documentation/tutorials.html)
- doc: [https://qiskit.org/documentation/apidoc/index.html](https://qiskit.org/documentation/apidoc/index.html)
- algorithms
- tutorial: [https://qiskit.org/ecosystem/algorithms/tutorials/index.html](https://qiskit.org/ecosystem/algorithms/tutorials/index.html)
- code: [https://github.com/Qiskit/qiskit-tutorials/tree/master/tutorials/algorithms](https://github.com/Qiskit/qiskit-tutorials/tree/master/tutorials/algorithms)
- Qiskit ecosystem
- index: [https://qiskit.org/ecosystem/](https://qiskit.org/ecosystem/)
- qiskit-aer: [https://github.com/Qiskit/qiskit-aer](https://github.com/Qiskit/qiskit-aer)
- qiskit-nature-pyscf: [https://github.com/qiskit-community/qiskit-nature-pyscf](https://github.com/qiskit-community/qiskit-nature-pyscf)
- base code repo: [https://github.com/qccontest/QC-Contest-Demo](https://github.com/qccontest/QC-Contest-Demo)
- error mitigation: [https://qiskit.org/ecosystem/ibm-runtime/tutorials/Error-Suppression-and-Error-Mitigation.html](https://qiskit.org/ecosystem/ibm-runtime/tutorials/Error-Suppression-and-Error-Mitigation.html)----
by Armit
2023/09/05