Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kahsolt/vqls-jiuzhang-pennylane
Contest solution for 2024第三届“量旋杯”大湾区量子计算挑战营
https://github.com/kahsolt/vqls-jiuzhang-pennylane
contest-solution pennylane quantum-computing variational-quantum-linear-solver
Last synced: about 2 months ago
JSON representation
Contest solution for 2024第三届“量旋杯”大湾区量子计算挑战营
- Host: GitHub
- URL: https://github.com/kahsolt/vqls-jiuzhang-pennylane
- Owner: Kahsolt
- License: mit
- Created: 2024-06-18T04:02:02.000Z (6 months ago)
- Default Branch: master
- Last Pushed: 2024-06-19T16:01:11.000Z (6 months ago)
- Last Synced: 2024-07-20T09:21:23.374Z (5 months ago)
- Topics: contest-solution, pennylane, quantum-computing, variational-quantum-linear-solver
- Language: Jupyter Notebook
- Homepage:
- Size: 3.39 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# VQLS-JiuZhang-PennyLane
Contest solution for 2024第三届“量旋杯”大湾区量子计算挑战营
----
Contest page: [https://quantum-challenge.spinq.cn/competitionDetail/profession](https://quantum-challenge.spinq.cn/competitionDetail/profession)
Team Name: 啊这是什么吃一口⚠ Due to the contest problem case is rather simple, the implemented method is actually the [VALA (arXiv:1909.03898)](https://arxiv.org/abs/1909.03898), **NOT** the more complicated [VQLS (arXiv:1909.05820)](https://arxiv.org/abs/1909.05820v4) 😈; but we do carefully explain the differences between these methods in [METHOD.md](./METHOD.md)
### Problem
```
[原题 - 出自《九章算术·方程·8》]
今有卖牛二、羊五,以买一十三豕,有余钱一千;
卖牛三、豕三,以买九羊,钱适足;
卖六羊,八豕,以买五牛,钱不足六百。
问:牛、羊、豕价各几何?
答曰:牛价一千二百,羊价五百,豕价三百。[线性方程组]
2 * x + 5 * y - 13 * z = 1000
3 * x - 9 * y + 3 * z = 0
-5 * x + 6 * y + 8 * z = -600
解:牛 x = 1200, 羊 y = 500, 豕 z = 300
```赛题本质为给定的**线性方程组求解**,其同解方程组为:
$$
\begin{array}{ll}
\begin{bmatrix}
2 & 5 & -13 \\
3 & -9 & 3 \\
-5 & 6 & 8 \\
\end{bmatrix} \begin{bmatrix}
12 \\
5 \\
3 \\
\end{bmatrix} = \begin{bmatrix}
10 \\
0 \\
-6 \\
\end{bmatrix}
\end{array}
$$已知的 **量子线性求解器 Quantum Linear-system Solver** 算法流派有:
- HHL / QPE-based
- 需要矩阵指数化 $ e^{iA\frac{t0}{2^k}} $
- 受控旋转部分 $ CR $ 角度难以确定
- 精度由qubit位数 / 线路宽度决定
- Adiabatic-based: 绝热演化
- 需要虚时演化算子 $ e^{-iHt} $,或一阶近似后使用 BlockEncoding
- 精度由迭代次数 / 线路深度决定
- VQLS: 变分线路 ⭐
- 浅线路,需要变分训练
- 精度由 ansatz 结构和参数质量决定
- qubo-based VQE (思路提供者: 铅笔芯奇)
- 解向量中的每个元素 $ x_i $ 转为二进制形式 $ \overline{b_k \dots b_1 b_0} $ ,由一组量子比特表达 (BasisEncoding)
- 原方程转换为 QUBO 问题,构造哈密顿量求最小值,取得最小值时即解出各 $ b_k $
- [How to solve QUBO problems using Qiskit](https://medium.com/@shoaib6174/how-to-solve-qubo-problems-using-qiskit-f4eab6cc3061)
- [QUBO, Ising Hamiltonians and VQA](https://quantumcomputing.stackexchange.com/questions/14098/qubo-ising-hamiltonians-and-vqa)
- 可以视作一种**稀疏表达**版本的 VQLS
- 优点: 若每个 $ x_i $ 表达为二进制时都是有穷串,则此方法可给出 **精确解** (此时损失函数应取到最小值0)
- 缺点: 需要先验地知道每个 $ x_i $ 的值域,以确定用多少比特表达
- Grover-based (?)考虑到赛题对所用量子门和线路深度的限制,**VQLS** 方法应该是唯一正解 🤔
### Quick start
- `pip install pennylane`
- run `submit.ipynb` with jupyter
- run `python run_VALA.py` if you wanna reproduce the training
- read [METHOD.md](./METHOD.md) for the theoretical story
- run `submit_ising.ipynb` with jupyter, we owe the raw idea to @铅笔芯奇
- I must admit that `VALA` method is more like a simulator toy, while the `ising` method is more practical & promising on real-chip and the future!Example of `run_VALA.py` run:
![run_VALA.png](./img/run_VALA.png)
#### refenrence
- essay & notes
- (2019) Variational algorithms for linear algebra: [https://arxiv.org/abs/1909.03898](https://arxiv.org/abs/1909.03898)
- (2019) Variational Quantum Linear Solver: [https://arxiv.org/abs/1909.05820v4](https://arxiv.org/abs/1909.05820v4)
- (2021) Variational Quantum Linear Solver with Dynamic Ansatz: [https://arxiv.org/abs/2107.08606](https://arxiv.org/abs/2107.08606)
- VQLS 变分量子算法解线性方程组: [https://blog.csdn.net/qq_43550173/article/details/121591659](https://blog.csdn.net/qq_43550173/article/details/121591659)
- Hadamard Test 以及 controlled gate 的一个细节: [https://zhuanlan.zhihu.com/p/412446869](https://zhuanlan.zhihu.com/p/412446869)
- implementaions
- PennyLane - Variational Quantum Linear Solver: [https://pennylane.ai/qml/demos/tutorial_vqls/](https://pennylane.ai/qml/demos/tutorial_vqls/)
- Qiskit VQLS tutorial: [https://github.com/qiskit-community/qiskit-textbook/blob/main/content/ch-paper-implementations/vqls.ipynb](https://github.com/qiskit-community/qiskit-textbook/blob/main/content/ch-paper-implementations/vqls.ipynb)
- VQLS 的 MindQuantum 复现: [https://www.cnblogs.com/liniganma/p/17323717.html](https://www.cnblogs.com/liniganma/p/17323717.html)
- PaddlePaddle-Quantum VQLS: [https://github.com/PaddlePaddle/Quantum/blob/master/applications/linear_solver/introduction_cn.ipynb](https://github.com/PaddlePaddle/Quantum/blob/master/applications/linear_solver/introduction_cn.ipynb)
- related solution
- Adiabatic-Linear-Solver-QPanda: [https://github.com/Kahsolt/Adiabatic-Linear-Solver-QPanda](https://github.com/Kahsolt/Adiabatic-Linear-Solver-QPanda)----
by Armit
2024/6/13