Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kaituoxu/X-Punctuator
A PyTorch implementation of a punctuation prediction system using (B)LSTM, which automatically adds suitable punctuation into text without punctuation.
https://github.com/kaituoxu/X-Punctuator
lstm punctuation pytorch
Last synced: 3 months ago
JSON representation
A PyTorch implementation of a punctuation prediction system using (B)LSTM, which automatically adds suitable punctuation into text without punctuation.
- Host: GitHub
- URL: https://github.com/kaituoxu/X-Punctuator
- Owner: kaituoxu
- Created: 2019-02-10T11:54:56.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-13T09:18:21.000Z (over 4 years ago)
- Last Synced: 2024-06-23T10:38:11.311Z (5 months ago)
- Topics: lstm, punctuation, pytorch
- Language: Python
- Homepage:
- Size: 158 KB
- Stars: 61
- Watchers: 3
- Forks: 21
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# X-Punctuator
A PyTorch implementation of punctuation prediction system using LSTM/BLSTM [1][2][3], which automatically adds suitable punctation into text without punctuation.## Install
- PyTorch 0.4+## Usage
`egs/toy/run.sh` provides an example usage.
```bash
# Set PATH and PYTHONPATH
$ cd egs/toy/; . ./path.sh
# Train
$ train.py -h
# Add punctuation
$ add_punctuation.py -h
# Analyze metrics
$ analyer.py -h
```#### How to visualize loss?
If you want to visualize your loss, you can use [visdom](https://github.com/facebookresearch/visdom) to do that:
1. Open a new terminal in your remote server (recommend tmux) and run `$ visdom`.
2. Open a new terminal and run `$ train.py ... --visdom 1 --vidsdom_id ""`.
3. Open your browser and type `:8097`, egs, `127.0.0.1:8097`.
4. In visdom website, chose `` in `Environment` to see your loss.
#### How to resume training?
```bash
$ train.py --continue_from
```
#### How to use multi-GPU?
Use comma separated gpu-id sequence, such as:
```bash
$ CUDA_VISIBLE_DEVICES="0,1" train.py
```## Reference
- [1] Kaituo Xu, Lei Xie, and Kaisheng Yao. "Investigating LSTM for punctuation prediction" in ISCSLP 2016
- [2] Ottokar Tilk and Tanel Alumae. "Bidirectional Recurrent Neural Network with Attention Mechanism for Punctuation Restoration" in Interspeech 2016
- [3] Ottokar Tilk and Tanel Alumae. "LSTM for Punctuation Restoration in Speech Transcripts" in Interspeech 2015