Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kaliv0/pypermissive

Validation library in Python, modeled after Pydantic
https://github.com/kaliv0/pypermissive

pydantic-v2 python-validator validation-library

Last synced: 10 days ago
JSON representation

Validation library in Python, modeled after Pydantic

Awesome Lists containing this project

README

        


Permissive Path

---

# PyPermissive

[![tests](https://img.shields.io/github/actions/workflow/status/kaliv0/pypermissive/ci.yml)](https://github.com/kaliv0/pypermissive/actions/workflows/ci.yml)
![Python 3.x](https://img.shields.io/badge/python-3.12-blue?style=flat-square&logo=Python&logoColor=white)
[![PyPI](https://img.shields.io/pypi/v/pypermissive.svg)](https://pypi.org/project/pypermissive/)
[![Downloads](https://static.pepy.tech/badge/pypermissive)](https://pepy.tech/projects/pypermissive)
[![License](https://img.shields.io/badge/License-MIT-yellow?style=flat-square)](https://github.com/kaliv0/pypermissive/blob/main/LICENSE)

Validation library in Python, modeled after Pydantic

## Example

Inherit from BaseModel and describe required types.

PyPermissive supports validation for primitive types:
```python
class Employee(BaseModel):
employee_id: int
name: str
salary: float
elected_benefits: bool = False

employee = Employee(
employee_id=1,
name="Foo Bar",
salary=123_000.00,
elected_benefits=True,
)
```

collections:
```python
class Book(BaseModel):
characters: dict[str, str]
chapters: list[str]

book = Book(
characters={"Pelleas": "he", "Melisande": "she"},
chapters=["Beginning", "Middle", "End"]
)
```

unions, classes and fields.


Fields are similar to pydantic with one caveat: you need to give value type explicitly:

```python
class User(BaseModel):
name: Field(type=str, default="Jimmie", frozen=True)
age: Field(type=int, gt=18, lt=35)
id: Field(type=UUID, default_factory=uuid4)
email: Field(type=str, pattern=r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+[.][a-zA-Z0-9-.]+$")
nickname: Field(type=str, min_length=6, max_length=12)
PIN: Field(type=str, field_validator=lambda x: x.isdigit())

```

You can also use decorators:

@ComputedField (invoke only from instances) and @ComputedClassField (invoke both on class and instance level)
```python
class Thesis:
BAZZ = ["1", "2", "3"]

def __init__(self):
self.fizz = [1, 2, 3, 4, 5]
self.buzz = [6, 7, 8, 9]

@ComputedField
def foo(self):
return [val for val in itertools.product(self.fizz, self.buzz)]

@ComputedClassField
def bar(self):
return list(itertools.permutations(self.BAZZ))


```

The library supports @validate_call that checks both argument and return types:
```python
@validate_call
def some_func(delimiter: str, count: int, numbers: list[int]) -> str:
return (delimiter * count).join([str(d) for d in numbers])
```