Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kamalkraj/BERT-NER
Pytorch-Named-Entity-Recognition-with-BERT
https://github.com/kamalkraj/BERT-NER
bert bert-ner conll-2003 cpp11 curl inference named-entity-recognition postman pretrained-models pytorch
Last synced: 2 months ago
JSON representation
Pytorch-Named-Entity-Recognition-with-BERT
- Host: GitHub
- URL: https://github.com/kamalkraj/BERT-NER
- Owner: kamalkraj
- License: agpl-3.0
- Created: 2019-02-24T10:40:46.000Z (almost 6 years ago)
- Default Branch: dev
- Last Pushed: 2021-05-06T19:38:36.000Z (over 3 years ago)
- Last Synced: 2024-11-05T07:34:15.745Z (3 months ago)
- Topics: bert, bert-ner, conll-2003, cpp11, curl, inference, named-entity-recognition, postman, pretrained-models, pytorch
- Language: Python
- Homepage:
- Size: 1.63 MB
- Stars: 1,206
- Watchers: 23
- Forks: 278
- Open Issues: 33
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- Awesome-pytorch-list-CNVersion - BERT-NER - Entity-Recognition)。 (Pytorch & related libraries|Pytorch & 相关库 / NLP & Speech Processing|自然语言处理 & 语音处理:)
- Awesome-pytorch-list - BERT-NER - Named-Entity-Recognition-with-BERT. (Pytorch & related libraries / NLP & Speech Processing:)
README
# BERT NER
Use google BERT to do CoNLL-2003 NER !
![new](https://i.imgur.com/OB4Ugp4.png) Train model using Python and Inference using C++
[ALBERT-TF2.0](https://github.com/kamalkraj/ALBERT-TF2.0)
[BERT-NER-TENSORFLOW-2.0](https://github.com/kamalkraj/BERT-NER-TF)
[BERT-SQuAD](https://github.com/kamalkraj/BERT-SQuAD)
# Requirements
- `python3`
- `pip3 install -r requirements.txt`# Run
`python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --task_name=ner --output_dir=out_base --max_seq_length=128 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.1`
# Result
## BERT-BASE
### Validation Data
```
precision recall f1-score supportPER 0.9677 0.9745 0.9711 1842
LOC 0.9654 0.9711 0.9682 1837
MISC 0.8851 0.9111 0.8979 922
ORG 0.9299 0.9292 0.9295 1341avg / total 0.9456 0.9534 0.9495 5942
```
### Test Data
```
precision recall f1-score supportPER 0.9635 0.9629 0.9632 1617
ORG 0.8883 0.9097 0.8989 1661
LOC 0.9272 0.9317 0.9294 1668
MISC 0.7689 0.8248 0.7959 702avg / total 0.9065 0.9209 0.9135 5648
```
## Pretrained model download from [here](https://1drv.ms/u/s!Auc3VRul9wo5hghurzE47bTRyUeR?e=08seO3)## BERT-LARGE
### Validation Data
```
precision recall f1-score supportORG 0.9288 0.9441 0.9364 1341
LOC 0.9754 0.9728 0.9741 1837
MISC 0.8976 0.9219 0.9096 922
PER 0.9762 0.9799 0.9781 1842avg / total 0.9531 0.9606 0.9568 5942
```
### Test Data
```
precision recall f1-score supportLOC 0.9366 0.9293 0.9329 1668
ORG 0.8881 0.9175 0.9026 1661
PER 0.9695 0.9623 0.9659 1617
MISC 0.7787 0.8319 0.8044 702avg / total 0.9121 0.9232 0.9174 5648
```
## Pretrained model download from [here](https://1drv.ms/u/s!Auc3VRul9wo5hgr8jwhFD8iPCYp1?e=UsJJ2V)# Inference
```python
from bert import Nermodel = Ner("out_base/")
output = model.predict("Steve went to Paris")
print(output)
'''
[
{
"confidence": 0.9981840252876282,
"tag": "B-PER",
"word": "Steve"
},
{
"confidence": 0.9998939037322998,
"tag": "O",
"word": "went"
},
{
"confidence": 0.999891996383667,
"tag": "O",
"word": "to"
},
{
"confidence": 0.9991968274116516,
"tag": "B-LOC",
"word": "Paris"
}
]
'''
```# Inference C++
## Pretrained and converted bert-base model download from [here](https://1drv.ms/u/s!Auc3VRul9wo5hgkJjtxZ8FAQGuj2?e=wffJCT)
### Download libtorch from [here](https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-1.2.0.zip)- install `cmake`, tested with `cmake` version `3.10.2`
- unzip downloaded model and `libtorch` in `BERT-NER`
- Compile C++ App
```bash
cd cpp-app/
cmake -DCMAKE_PREFIX_PATH=../libtorch
```
![cmake output image](/img/cmake.png)
```bash
make
```
![make output image](/img/make.png)- Runing APP
```bash
./app ../base
```
![inference output image](/img/inference.png)NB: Bert-Base C++ model is split in to two parts.
- Bert Feature extractor and NER classifier.
- This is done because `jit trace` don't support `input` depended `for` loop or `if` conditions inside `forword` function of `model`.# Deploy REST-API
BERT NER model deployed as rest api
```bash
python api.py
```
API will be live at `0.0.0.0:8000` endpoint `predict`
#### cURL request
` curl -X POST http://0.0.0.0:8000/predict -H 'Content-Type: application/json' -d '{ "text": "Steve went to Paris" }'`Output
```json
{
"result": [
{
"confidence": 0.9981840252876282,
"tag": "B-PER",
"word": "Steve"
},
{
"confidence": 0.9998939037322998,
"tag": "O",
"word": "went"
},
{
"confidence": 0.999891996383667,
"tag": "O",
"word": "to"
},
{
"confidence": 0.9991968274116516,
"tag": "B-LOC",
"word": "Paris"
}
]
}
```
#### cURL
![curl output image](/img/curl.png)
#### Postman
![postman output image](/img/postman.png)### C++ unicode support
- http://github.com/ufal/unilib### Tensorflow version
- https://github.com/kyzhouhzau/BERT-NER