Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kamalkraj/named-entity-recognition-with-bidirectional-lstm-cnns
Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
https://github.com/kamalkraj/named-entity-recognition-with-bidirectional-lstm-cnns
bilstm character-embeddings cnn conll-2003 glove-embeddings keras named-entity-recognition python36 tensorflow word-embeddings
Last synced: about 9 hours ago
JSON representation
Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
- Host: GitHub
- URL: https://github.com/kamalkraj/named-entity-recognition-with-bidirectional-lstm-cnns
- Owner: kamalkraj
- License: gpl-3.0
- Created: 2018-01-27T13:27:39.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2020-04-21T09:34:09.000Z (almost 5 years ago)
- Last Synced: 2025-01-14T00:09:20.595Z (7 days ago)
- Topics: bilstm, character-embeddings, cnn, conll-2003, glove-embeddings, keras, named-entity-recognition, python36, tensorflow, word-embeddings
- Language: Python
- Homepage:
- Size: 1.09 MB
- Stars: 361
- Watchers: 22
- Forks: 142
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
#### Better NER [BERT Named-Entity-Recognition](https://github.com/kamalkraj/BERT-NER)
# Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
A keras implementation of Bidirectional-LSTM_CNNs for Named-Entity-Recoganition. The original paper can be found at https://arxiv.org/abs/1511.08308The implementation differs from the original paper in the following ways :
1) lexicons are not considered
2) Bucketing is used to speed up the training
3) nadam optimizer used instead of SGD
# Result
The model produces a test F1_score of 90.9 % with ~70 epochs. The results produced in the paper for the given architecture is 91.14
Architecture(BILSTM-CNN with emb + caps)
# Dataset
### conll-2003
# Network Model in paper
# Network Model Constructed Using Keras
![alt text](https://raw.githubusercontent.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs/master/model.png)
## To run the script
```bash
python3 nn.py
```
## Requirements
0) nltk
1) numpy
2) Keras==2.1.2
3) Tensorflow==1.4.1
## Inference on trained model
```python
from ner import Parserp = Parser()
p.load_models("models/")
p.predict("Steve Went to Paris")
##Output [('Steve', 'B-PER'), ('went', 'O'), ('to', 'O'), ('Paris', 'B-LOC')]
```