https://github.com/kanadshee-18/vector-store
A minimal project to understand how cosine similarity works in a vector database ๐ง ๐. It demonstrates semantic search by converting text into embeddings and comparing them using vector math.
https://github.com/kanadshee-18/vector-store
ai cosine-similarity expressjs gemini node-cache nodejs textembedding ts-node typescript uuidv4 vector vector-search
Last synced: 8 months ago
JSON representation
A minimal project to understand how cosine similarity works in a vector database ๐ง ๐. It demonstrates semantic search by converting text into embeddings and comparing them using vector math.
- Host: GitHub
- URL: https://github.com/kanadshee-18/vector-store
- Owner: KanadShee-18
- License: mit
- Created: 2025-05-03T17:40:29.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2025-05-04T06:24:31.000Z (8 months ago)
- Last Synced: 2025-05-04T07:25:07.729Z (8 months ago)
- Topics: ai, cosine-similarity, expressjs, gemini, node-cache, nodejs, textembedding, ts-node, typescript, uuidv4, vector, vector-search
- Language: TypeScript
- Homepage:
- Size: 185 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ๐ Vector Similarity Search Demo
---
## A simple visualization:

> A minimal project to understand how **cosine similarity** works in a **vector database** ๐ง ๐.
> It demonstrates **semantic search** by converting text into embeddings and comparing them using vector math.
---
## ๐งฐ Tech Stack
- โ๏ธ Node.js + TypeScript
- ๐งพ Custom in-memory vector store
- ๐ Cosine similarity algorithm
---
## ๐ก What Youโll Learn
- ๐ค How text embeddings are used in vector search
- ๐ How cosine similarity compares semantic meaning
- ๐ฏ Filtering using `topK` and `threshold` parameters
- โก Real-world basics of how vector DBs like Pinecone, Weaviate, or FAISS work
## License
[MIT License](LICENSE)