Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kapsner/mllrnrs
Learners for the `mlexperiments` R 📦
https://github.com/kapsner/mllrnrs
algorithms experiments glmnet learner lightgbm machine-learning r r-package ranger xgboost
Last synced: 2 months ago
JSON representation
Learners for the `mlexperiments` R 📦
- Host: GitHub
- URL: https://github.com/kapsner/mllrnrs
- Owner: kapsner
- License: gpl-3.0
- Created: 2022-10-04T18:58:23.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-07-11T10:21:52.000Z (6 months ago)
- Last Synced: 2024-10-27T13:55:28.582Z (3 months ago)
- Topics: algorithms, experiments, glmnet, learner, lightgbm, machine-learning, r, r-package, ranger, xgboost
- Language: R
- Homepage: https://github.com/kapsner/mllrnrs/wiki
- Size: 297 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: NEWS.md
- License: LICENSE.md
Awesome Lists containing this project
README
# mllrnrs
[![](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)
[![](https://www.r-pkg.org/badges/version/mllrnrs)](https://cran.r-project.org/package=mllrnrs)
[![CRAN
checks](https://badges.cranchecks.info/worst/mllrnrs.svg)](https://cran.r-project.org/web/checks/check_results_mllrnrs.html)
[![](http://cranlogs.r-pkg.org/badges/grand-total/mllrnrs?color=blue)](https://cran.r-project.org/package=mllrnrs)
[![](http://cranlogs.r-pkg.org/badges/last-month/mllrnrs?color=blue)](https://cran.r-project.org/package=mllrnrs)
[![Dependencies](https://tinyverse.netlify.app/badge/mllrnrs)](https://cran.r-project.org/package=mllrnrs)
[![R build
status](https://github.com/kapsner/mllrnrs/workflows/R%20CMD%20Check%20via%20%7Btic%7D/badge.svg)](https://github.com/kapsner/mllrnrs/actions)
[![R build
status](https://github.com/kapsner/mllrnrs/workflows/lint/badge.svg)](https://github.com/kapsner/mllrnrs/actions)
[![R build
status](https://github.com/kapsner/mllrnrs/workflows/test-coverage/badge.svg)](https://github.com/kapsner/mllrnrs/actions)
[![](https://codecov.io/gh/https://github.com/kapsner/mllrnrs/branch/main/graph/badge.svg)](https://codecov.io/gh/https://github.com/kapsner/mllrnrs)The `mllrnrs` R package ships with additional ML learners for
[`mlexperiments`](https://github.com/kapsner/mlexperiments).Currently implemented learners are:
| Name | Based on | Description / Tasks |
|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LearnerGlmnet | `glmnet::glmnet` | General interface to `glmnet` (examples available for families [`binomial`](tests/testthat/test-glmnet_binary.R) , [`multinomial`](tests/testthat/test-glmnet_multiclass.R), and [`regression`](tests/testthat/test-glmnet_regression.R) |
| LearnerLightgbm | `lightgbm::lgb.train` | General interface to `lightgbm` (examples available for objectives [`binary`](tests/testthat/test-lightgbm_binary.R) , [`multiclass`](tests/testthat/test-lightgbm_multiclass.R), and [`regression`](tests/testthat/test-lightgbm_regression.R) |
| LearnerRanger | `ranger::ranger` | General interface to `ranger` (examples available for tasks [`binary`](tests/testthat/test-ranger_binary.R) , [`multiclass`](tests/testthat/test-ranger_multiclass.R), and [`regression`](tests/testthat/test-ranger_regression.R) |
| LearnerXgboost | `xgboost::xgb.train` | General interface to `xgboost` (examples available for objectives [`binary:logistic`](tests/testthat/test-xgboost_binary.R) , [`multi:softprob`](tests/testthat/test-xgboost_multiclass.R), and [`reg:squarederror`](tests/testthat/test-xgboost_regression.R) |For a short introduction on how to use the learners together with the
`mlexperiments` R package, please visit the [wiki
page](https://github.com/kapsner/mllrnrs/wiki).Some learner for survival tasks are implemented in the
[`mlsurvlrnrs`](https://github.com/kapsner/mlsurvlrnrs) R package.## Installation
`mllrnrs` can be installed directly from CRAN:
``` r
install.packages("mllrnrs")
```To install the development version, run
``` r
install.packages("remotes")
remotes::install_github("kapsner/mllrnrs")
```