Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/karelze/tclf

A scikit-learn compatible classifier to perform trade classification in Python.
https://github.com/karelze/tclf

empirical finance microstructure python rule-based-classifier scikit-learn trade-classification

Last synced: 3 months ago
JSON representation

A scikit-learn compatible classifier to perform trade classification in Python.

Awesome Lists containing this project

README

        

# Trade Classification With Python

[![GitHubActions](https://github.com/karelze/tclf//actions/workflows/tests.yaml/badge.svg)](https://github.com/KarelZe/tclf/actions)
[![codecov](https://codecov.io/gh/KarelZe/tclf/branch/main/graph/badge.svg?token=CBM1RXGI86)](https://codecov.io/gh/KarelZe/tclf/tree/main/graph)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=KarelZe_tclf&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=KarelZe_tclf)

![Logo](https://karelze.github.io/tclf/img/header.png)

**Documentation βœ’οΈ:** [https://karelze.github.io/tclf/](https://karelze.github.io/tclf/)

**Source Code 🐍:** [https://github.com/KarelZe/tclf](https://github.com/KarelZe/tclf)

`tclf` is a [`scikit-learn`](https://scikit-learn.org/stable/)-compatible implementation of trade classification algorithms to classify financial markets transactions into buyer- and seller-initiated trades.

The key features are:

* **Easy**: Easy to use and learn.
* **Sklearn-compatible**: Compatible to the sklearn API. Use sklearn metrics and visualizations.
* **Feature complete**: Wide range of supported algorithms. Use the algorithms individually or stack them like LEGO blocks.

## Installation

**pip**
```console
pip install tclf
```

**[uv⚑](https://github.com/astral-sh/uv)**
```console
uv pip install tclf
```

## Supported Algorithms

- (Rev.) CLNV rule[^1]
- (Rev.) EMO rule[^2]
- (Rev.) LR algorithm[^6]
- (Rev.) Tick test[^5]
- Depth rule[^3]
- Quote rule[^4]
- Tradesize rule[^3]

For a primer on trade classification rules visit the [rules section πŸ†•](https://karelze.github.io/tclf/rules/) in our docs.

## Minimal Example

Let's start simple: classify all trades by the quote rule and all other trades, which cannot be classified by the quote rule, randomly.

Create a `main.py` with:
```python title="main.py"
import numpy as np
import pandas as pd

from tclf.classical_classifier import ClassicalClassifier

X = pd.DataFrame(
[
[1.5, 1, 3],
[2.5, 1, 3],
[1.5, 3, 1],
[2.5, 3, 1],
[1, np.nan, 1],
[3, np.nan, np.nan],
],
columns=["trade_price", "bid_ex", "ask_ex"],
)

clf = ClassicalClassifier(layers=[("quote", "ex")], strategy="random")
clf.fit(X)
probs = clf.predict_proba(X)
```
Run your script with
```console
$ python main.py
```
In this example, input data is available as a pd.DataFrame with columns conforming to our [naming conventions](https://karelze.github.io/tclf/naming_conventions/).

The parameter `layers=[("quote", "ex")]` sets the quote rule at the exchange level and `strategy="random"` specifies the fallback strategy for unclassified trades.

## Advanced Example
Often it is desirable to classify both on exchange level data and nbbo data. Also, data might only be available as a numpy array. So let's extend the previous example by classifying using the quote rule at exchange level, then at nbbo and all other trades randomly.

```python title="main.py" hl_lines="6 16 17 20"
import numpy as np
from sklearn.metrics import accuracy_score

from tclf.classical_classifier import ClassicalClassifier

X = np.array(
[
[1.5, 1, 3, 2, 2.5],
[2.5, 1, 3, 1, 3],
[1.5, 3, 1, 1, 3],
[2.5, 3, 1, 1, 3],
[1, np.nan, 1, 1, 3],
[3, np.nan, np.nan, 1, 3],
]
)
y_true = np.array([-1, 1, 1, -1, -1, 1])
features = ["trade_price", "bid_ex", "ask_ex", "bid_best", "ask_best"]

clf = ClassicalClassifier(
layers=[("quote", "ex"), ("quote", "best")], strategy="random", features=features
)
clf.fit(X)
acc = accuracy_score(y_true, clf.predict(X))
```
In this example, input data is available as np.arrays with both exchange (`"ex"`) and nbbo data (`"best"`). We set the layers parameter to `layers=[("quote", "ex"), ("quote", "best")]` to classify trades first on subset `"ex"` and remaining trades on subset `"best"`. Additionally, we have to set `ClassicalClassifier(..., features=features)` to pass column information to the classifier.

Like before, column/feature names must follow our [naming conventions](https://karelze.github.io/tclf/naming_conventions/).

## Other Examples

For more practical examples, see our [examples section](https://karelze.github.io/tclf/option_trade_classification).

## Development

We are using [`pixi`](https://github.com/prefix-dev/pixi) as a dependency management and workflow tool.

```bash
pixi install
pixi run postinstall
pixi run test
```

## Citation

If you are using the package in publications, please cite as:

```latex
@software{bilz_tclf_2023,
author = {Bilz, Markus},
license = {BSD 3},
month = nov,
title = {{tclf} -- trade classification with python},
url = {https://github.com/KarelZe/tclf},
version = {0.0.1},
year = {2023}
}
```

## Footnotes

[^1]:

Chakrabarty, B., Li, B., Nguyen, V., & Van Ness, R. A. (2007). Trade classification algorithms for electronic communications network trades. Journal of Banking & Finance, 31(12), 3806–3821. https://doi.org/10.1016/j.jbankfin.2007.03.003


[^2]:
Ellis, K., Michaely, R., & O’Hara, M. (2000). The accuracy of trade classification rules: Evidence from nasdaq. The Journal of Financial and Quantitative Analysis, 35(4), 529–551. https://doi.org/10.2307/2676254


[^3]:
Grauer, C., Schuster, P., & Uhrig-Homburg, M. (2023). Option trade classification. https://doi.org/10.2139/ssrn.4098475


[^4]:
Harris, L. (1989). A day-end transaction price anomaly. The Journal of Financial and Quantitative Analysis, 24(1), 29. https://doi.org/10.2307/2330746


[^5]:
Hasbrouck, J. (2009). Trading costs and returns for U.s. Equities: Estimating effective costs from daily data. The Journal of Finance, 64(3), 1445–1477. https://doi.org/10.1111/j.1540-6261.2009.01469.x

[^6]:
Lee, C., & Ready, M. J. (1991). Inferring trade direction from intraday data. The Journal of Finance, 46(2), 733–746. https://doi.org/10.1111/j.1540-6261.1991.tb02683.x