An open API service indexing awesome lists of open source software.

https://github.com/karelze/thesis

My thesis ๐Ÿ…
https://github.com/karelze/thesis

classification karlsruhe-institute-of-technology kit ml quantitive-finance

Last synced: 4 months ago
JSON representation

My thesis ๐Ÿ…

Awesome Lists containing this project

README

        

![badge thesis](https://github.com/KarelZe/thesis/actions/workflows/action_latex.yaml/badge.svg)
![badge code](https://github.com/KarelZe/thesis/actions/workflows/action_python.yaml/badge.svg)
![badge code coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/KarelZe/e2578f2f3e6322d299f1cb2e294d6b0b/raw/covbadge.json)

# thesis

## Overview

This repository contains all the resources for my thesis on option trade classification at Karlsruhe Institute of Technology.

| notes ๐Ÿ“œ | schedule โŒš | experiments ๐Ÿงช | computing resources โ˜„๏ธ | document ๐ŸŽ“ |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------- |
| See [`references`](https://github.com/KarelZe/thesis/tree/main/references) folder. Download obsidian from [obsidian.md](https://obsidian.md/) to easily browse the notes. | Link to [tasks and mile stones](https://github.com/KarelZe/thesis/milestones?direction=asc&sort=due_date&state=open). | Link to [weights & biases](https://wandb.ai/fbv/thesis) (requires login). | Link to [gcp](https://console.cloud.google.com/welcome?project=flowing-mantis-239216) (requires login), and to [bwHPC](https://bwhpc.de/) (requires login). | see [`releases`](https://github.com/KarelZe/thesis/releases/). |

## Development

### Set up git pre-commit hooks ๐Ÿ™
Pre-commit hooks are pre-checks to avoid committing error-prone code. The tests are defined in the [`.pre-commit-config.yaml`](https://github.com/KarelZe/thesis/blob/main/.pre-commit-config.yaml). Install them using:
```shell
pip install .[dev]
pre-commit install
pre-commit run --all-files
```
### Run tests๐Ÿงฏ
Tests can be run using [`tox`](https://tox.wiki/en/latest/). Just type:
```shell
tox
```
## Acknowledgement

The authors acknowledge support by the state of Baden-Wรผrttemberg through [bwHPC](https://bwhpc.de/).

Our implementation is based on:


Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting Deep Learning Models for Tabular Data. Advances in Neural Information Processing Systems, 34, 18932โ€“18943.




Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. Proceedings of the 32nd International Conference on Neural Information Processing Systems, 32, 6639โ€“6649.




Rubachev, I., Alekberov, A., Gorishniy, Y., & Babenko, A. (2022). Revisiting pretraining objectives for tabular deep learning (arXiv:2207.03208). arXiv. http://arxiv.org/abs/2207.03208