https://github.com/katerynazakharova/olive-separation-with-tensorflow-object-detection-api
Object detection on a custom dataset
https://github.com/katerynazakharova/olive-separation-with-tensorflow-object-detection-api
Last synced: 4 months ago
JSON representation
Object detection on a custom dataset
- Host: GitHub
- URL: https://github.com/katerynazakharova/olive-separation-with-tensorflow-object-detection-api
- Owner: KaterynaZakharova
- Created: 2021-01-20T14:01:55.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2021-01-20T15:09:44.000Z (over 4 years ago)
- Last Synced: 2025-01-31T22:57:35.365Z (5 months ago)
- Language: Jupyter Notebook
- Size: 14.3 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Olive-Separation-With-TensorFlow-Object-Detection-API
The task is to identify and to count black and green olives in the video.The steps:
### 1. Make 75 photos.
(25 black olives, 25 green olives, 25 both)**Examples of images:**


### 2. Transform images into a size of 300x300.
Using *transform_image_resolution.py*### 3. Create annotations in LableImg.
Creating CSV format from XML using *xml_to_csv.py*### 4. Generate TFRecords.
Using *generate_tfrecord.py*### 5. Create a label map file and a configuration file.
The used configuration file is https://github.com/tensorflow/models/blob/master/research/object_detection/configs/tf2/ssd_efficientdet_d0_512x512_coco17_tpu-8.config### 6. Train model.
The used model is http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz### 7. Export the inference graph.
### 8. Test the model.
**Input:**
**Output:**

`8 black olives.`
`1 green olives.`