Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/katydid/katydid-haskell

An Encoding Agnostic Validation Language
https://github.com/katydid/katydid-haskell

automata haskell nested-structures schema validation

Last synced: 5 days ago
JSON representation

An Encoding Agnostic Validation Language

Awesome Lists containing this project

README

        

# Katydid

[![Build Status](https://travis-ci.org/katydid/katydid-haskell.svg?branch=master)](https://travis-ci.org/katydid/katydid-haskell)

A Haskell implementation of Katydid.

![Katydid Logo](https://cdn.rawgit.com/katydid/katydid.github.io/master/logo.png)

This includes:

- [Relapse](https://katydid.github.io/katydid-haskell/Relapse.html): Validation Language
- Parsers: [JSON](https://katydid.github.io/katydid-haskell/Json.html) and [XML](https://katydid.github.io/katydid-haskell/Xml.html)

[Documentation for katydid](http://katydid.github.io/)

[Documentation for katydid-haskell](https://katydid.github.io/katydid-haskell/)

[Documentation for katydid-haskell/Relapse](https://katydid.github.io/katydid-haskell/Relapse.html)

All JSON and XML tests from [the language agnostic test suite](https://github.com/katydid/testsuite) [passes].

[Hackage](https://hackage.haskell.org/package/katydid)

## Example

Validating a single structure can be done using the validate function:
```haskell
validate :: Tree t => Grammar -> [t] -> Bool
```

, where a tree is a class in the [Parsers](https://katydid.github.io/katydid-haskell/Parsers.html) module:
```haskell
class Tree a where
getLabel :: a -> Label
getChildren :: a -> [a]
```

Here is an example that validates a single JSON tree:
```haskell
main = either
(\err -> putStrLn $ "error:" ++ err)
(\valid -> if valid
then putStrLn "dragons exist"
else putStrLn "dragons are fictional"
) $
Relapse.validate <$>
Relapse.parse ".DragonsExist == true" <*>
Json.decodeJSON "{\"DragonsExist\": false}"
```

## Efficiency

If you want to validate multiple trees using the same grammar then the filter function does some internal memoization, which makes a huge difference.

```haskell
filter :: Tree t => Grammar -> [[t]] -> [[t]]
```

## User Defined Functions

If you want to create your own extra functions for operating on the leaves,
then you can inject them into the parse function:

```haskell
main = either
(\err -> putStrLn $ "error:" ++ err)
(\valid -> if valid
then putStrLn "prime birthday !!!"
else putStrLn "JOMO"
) $
Relapse.validate <$>
Relapse.parseWithUDFs userLib ".Survived->isPrime($int)" <*>
Json.decodeJSON "{\"Survived\": 104743}"
```

Defining your own user library to inject is easy.
The `Expr` library provides many useful helper functions:

```haskell
import Data.Numbers.Primes (isPrime)
import Data.Katydid.Relapse.Expr

userLib :: String -> [AnyExpr] -> Either String AnyExpr
userLib "isPrime" args = mkIsPrime args
userLib n _ = throwError $ "undefined function: " ++ n

mkIsPrime :: [AnyExpr] -> Either String AnyExpr
mkIsPrime args = do {
arg <- assertArgs1 "isPrime" args;
mkBoolExpr . isPrimeExpr <$> assertInt arg;
}

isPrimeExpr :: Integral a => Expr a -> Expr Bool
isPrimeExpr numExpr = trimBool Expr {
desc = mkDesc "isPrime" [desc numExpr]
, eval = \fieldValue -> isPrime <$> eval numExpr fieldValue
}
```

## Roadmap

- Protobuf parser
- Profile and Optimize (bring up to par with Go version)
- Typed DSL (Combinator)