Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kbeaugrand/semantickernel.connectors.memory.sqlserver
SQL Server connector for Semantic Kernel plugin and Kernel Memory
https://github.com/kbeaugrand/semantickernel.connectors.memory.sqlserver
ai artificial-intelligence indexing llm memory openai rag sdk semantic-search sql-server
Last synced: 2 months ago
JSON representation
SQL Server connector for Semantic Kernel plugin and Kernel Memory
- Host: GitHub
- URL: https://github.com/kbeaugrand/semantickernel.connectors.memory.sqlserver
- Owner: kbeaugrand
- License: mit
- Created: 2023-08-15T09:19:39.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-05-21T06:52:30.000Z (8 months ago)
- Last Synced: 2024-05-22T06:03:53.598Z (8 months ago)
- Topics: ai, artificial-intelligence, indexing, llm, memory, openai, rag, sdk, semantic-search, sql-server
- Language: C#
- Homepage:
- Size: 193 KB
- Stars: 39
- Watchers: 3
- Forks: 10
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
README
# Semantic Kernel & Kernel Memory - SQL Connector
[![Build & Test](https://github.com/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer/actions/workflows/build_test.yml/badge.svg)](https://github.com/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer/actions/workflows/build_test.yml)
[![Create Release](https://github.com/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer/actions/workflows/publish.yml/badge.svg)](https://github.com/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer/actions/workflows/publish.yml)
[![Version](https://img.shields.io/github/v/release/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer)](https://img.shields.io/github/v/release/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer)
[![License](https://img.shields.io/github/license/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer)](https://img.shields.io/github/v/release/kbeaugrand/SemanticKernel.Connectors.Memory.SqlServer)This is a connector for the [Semantic Kernel](https://aka.ms/semantic-kernel).
> This package has been deprecated as it is legacy and is no longer maintained.
It provides a connection to a SQL database for the Semantic Kernel for the memories.
## About Semantic Kernel
**Semantic Kernel (SK)** is a lightweight SDK enabling integration of AI Large
Language Models (LLMs) with conventional programming languages. The SK
extensible programming model combines natural language **semantic functions**,
traditional code **native functions**, and **embeddings-based memory** unlocking
new potential and adding value to applications with AI.Please take a look at [Semantic Kernel](https://aka.ms/semantic-kernel) for more information.
## About Kernel Memory
**Kernel Memory** (KM) is a multi-modal **AI Service** specialized in the efficient indexing of datasets through custom continuous data hybrid pipelines, with support for **Retrieval Augmented Generation (RAG)**, synthetic memory, prompt engineering, and custom semantic memory processing.
## Semantic Kernel Plugin
To install this memory store, you need to add the required nuget package to your project:
```dotnetcli
dotnet add package SemanticKernel.Connectors.Memory.SqlServer
```## Usage
To add your SQL Server memory connector, add the following statements to your kernel initialization code:
```csharp
using SemanticKernel.Connectors.Memory.SqlServer;
var kernel = Kernel.CreateBuilder()
.Build();var sqlMemoryStore = await SqlServerMemoryStore.ConnectAsync(connectionString: "Server=.;Database=SK;Trusted_Connection=True;");
var semanticTextMemory = new SemanticTextMemory(sqlMemoryStore, kernel.GetRequiredService());kernel.ImportPluginFromObject(new TextMemoryPlugin(semanticTextMemory));
```
The memory store will populate all the needed tables during startup and let you focus on the development of your plugin.
## Kernel Memory Plugin
```bash
dotnet add package KernelMemory.MemoryStorage.SqlServer
```## Usage
To add your SQL Server memory connector, add the following statements to your kernel memory initialization code:
```csharp
using SemanticKernel.Connectors.Memory.SqlServer;
...
var memory = new KernelMemoryBuilder()
.WithOpenAIDefaults(Env.Var("OPENAI_API_KEY"))
.WithSqlServerMemoryDb("YouSqlConnectionString")
.Build();
```Then you can use the memory store to import documents and ask questions:
```csharp
// Import a file
await memory.ImportDocumentAsync("meeting-transcript.docx", tags: new() { { "user", "Blake" } });// Import multiple files and apply multiple tags
await memory.ImportDocumentAsync(new Document("file001")
.AddFile("business-plan.docx")
.AddFile("project-timeline.pdf")
.AddTag("user", "Blake")
.AddTag("collection", "business")
.AddTag("collection", "plans")
.AddTag("fiscalYear", "2023"));var answer1 = await memory.AskAsync("How many people attended the meeting?");
var answer2 = await memory.AskAsync("what's the project timeline?", filter: new MemoryFilter().ByTag("user", "Blake"));
```The memory store will populate all the needed tables during startup and let you focus on the development of your plugin.
## License
This project is licensed under the [MIT License](LICENSE).