Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kdexd/probnmn-clevr
Code for ICML 2019 paper "Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering" [long-oral]
https://github.com/kdexd/probnmn-clevr
clevr icml icml-2019 neural-module-networks probabilistic-models vqa
Last synced: 6 days ago
JSON representation
Code for ICML 2019 paper "Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering" [long-oral]
- Host: GitHub
- URL: https://github.com/kdexd/probnmn-clevr
- Owner: kdexd
- License: mit
- Created: 2019-05-14T13:35:08.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-06-21T21:58:19.000Z (over 2 years ago)
- Last Synced: 2023-02-28T22:51:53.206Z (over 1 year ago)
- Topics: clevr, icml, icml-2019, neural-module-networks, probabilistic-models, vqa
- Language: Python
- Homepage: https://kdexd.github.io/probnmn-clevr
- Size: 1.6 MB
- Stars: 63
- Watchers: 3
- Forks: 11
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Probabilistic Neural-symbolic Models
====================================Code for our ICML 2019 paper:
**[Probabilistic Neural-Symbolic Models for Interpretable Visual Question Answering][1]**
Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, Devi ParikhCheckout our package documentation at
[kdexd.github.io/probnmn-clevr](https://kdexd.github.io/probnmn-clevr)!![probnmn-model](docs/_static/probnmn_model.jpg)
If you find this code useful, please consider citing:
```text
@inproceedings{vedantam2019probabilistic,
title={Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering},
author={Ramakrishna Vedantam and Karan Desai and Stefan Lee and Marcus Rohrbach and Dhruv Batra and Devi Parikh},
booktitle={ICML},
year={2019}
}
```Usage Instructions
------------------1. [How to setup this codebase?][2]
2. [How to train your ProbNMN?][3]
3. [How to evaluate or run inference?][4]Pre-trained Checkpoint
----------------------Pre-trained checkpoints and corresponding config files (with all the
hyper-parameters) for all training phases is available with v1.0 release of
this repository. Check out the [Releases](https://github.com/kdexd/probnmn-clevr/releases)!Acknowledgments
---------------We thank the developers of:
1. [@davidmascharka/tbd-nets](https://www.github.com/davidmascharka/tbd-nets)
for providing a very clean implementation of our core Neural Module Network.2. [@allenai/allennlp](https://www.github.com/allenai/allennlp) for providing
an awesome framework which indeed takes _masking and padding seriously._3. [@rbgirshick/yacs](https://www.github.com/rbgirshick/yacs) for providing an
efficient package-wide configuration management.4. [@pytorch/pytorch](https://www.github.com/pytorch/pytorch), this needs no
reason.[1]: https://arxiv.org/abs/1902.07864
[2]: https://kdexd.github.io/probnmn-clevr/probnmn/usage/setup_dependencies.html
[3]: https://kdexd.github.io/probnmn-clevr/probnmn/usage/training.html
[4]: https://kdexd.github.io/probnmn-clevr/probnmn/usage/evaluation_inference.html