https://github.com/keller-mark/miqc-py
Python implementation of miQC: probablistic quality control of scRNA-seq data
https://github.com/keller-mark/miqc-py
Last synced: 4 months ago
JSON representation
Python implementation of miQC: probablistic quality control of scRNA-seq data
- Host: GitHub
- URL: https://github.com/keller-mark/miqc-py
- Owner: keller-mark
- License: mit
- Created: 2024-07-27T19:22:35.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-08-08T14:37:15.000Z (10 months ago)
- Last Synced: 2024-08-08T17:07:19.687Z (10 months ago)
- Language: Python
- Homepage:
- Size: 1.69 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# miqc-py
[](https://pypi.org/project/miqc_py)
Python implementation of [miQC](https://github.com/greenelab/miQC) ([paper](https://doi.org/10.1371/journal.pcbi.1009290)).
## Installation
```sh
pip install miqc_py
```## Usage
Usage follows the scverse API conventions.
Parameter names follow the R implementation of `miQC`.```python
import miqc_py# ...
miqc_py.calculate_miqc(adata)
miqc_py.filter_miqc(adata)
```### Plotting
Optionally, we can plot the results with `altair` (not a dependency of `miqc_py` - may need to install first).
```python
import altair as altalt.Chart(adata.obs).mark_circle().encode(
x="total_genes_by_counts:Q",
y="pct_counts_mito:Q",
color="prob_compromised:Q"
)
```## Development
```sh
conda env create -f environment.yml
conda activate miqc-py
``````sh
jupyter lab
```