Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
Diagrams for visualizing neural network architecture (Created with diagrams.net)
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
architecture cnn deep-learning diagrams neural-network visualisation visualization
Last synced: 3 months ago
JSON representation
Diagrams for visualizing neural network architecture (Created with diagrams.net)
- Host: GitHub
- URL: https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
- Owner: kennethleungty
- License: mit
- Created: 2021-08-20T04:37:30.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-02-09T01:43:00.000Z (12 months ago)
- Last Synced: 2024-08-02T16:53:27.610Z (6 months ago)
- Topics: architecture, cnn, deep-learning, diagrams, neural-network, visualisation, visualization
- Homepage: https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-a6b6138ed875
- Size: 585 KB
- Stars: 683
- Watchers: 4
- Forks: 452
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Neural Network Architecture Diagrams
Using diagrams.net (aka draw.io) to generate diagrams to better visualize neural network model architectureLink to TowardsDataScience article: https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-a6b6138ed875
___## Diagram Examples
#### YOLO v1
![YOLO V1](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/yolo_v1_image.png?raw=true)
___
#### VGG-16
![VGG-16](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/vgg16_image.png?raw=true)
___
#### Autoencoder
![Autoencoder](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/autoencoder_lstm.png?raw=true)
Credits to [GabrielLima1995](https://github.com/GabrielLima1995) for the Autoencoder submission
___
#### Deep Convolutional Network (DCN)
![DCN](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/Convolutional%20Network%20(DCN).jpg?raw=true)
Credits to [Mohammed Lubbad](https://github.com/mlubbad) for the DCN submission
___
#### Recurrent Neural Network(RNN)
![RNN](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/Recurrent%20Neural%20Network%20(RNN).jpg?raw=true)
Credits to [Mohammed Lubbad](https://github.com/mlubbad) for the RNN submission
___
#### Auto Encoder (AE)
![AE](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/Auto%20Encoder%20(AE).jpg?raw=true)
Credits to [Mohammed Lubbad](https://github.com/mlubbad) for the AE submission
___
#### Deep Belief Network (DBN)
![DBN](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/Deep%20Belief%20Network%20(DBN).jpg?raw=true)
Credits to [Mohammed Lubbad](https://github.com/mlubbad) for the DBN submission
___
#### Restricted BM (RBMs)
![RBM](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/Restricted%20BM%20(RBMs).jpg?raw=true)
Credits to [Mohammed Lubbad](https://github.com/mlubbad) for the RBM submission
___
#### ConvLSTM2D for Action Recognition
![RBM](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/action_recognition_xml.png?raw=true)
Credits to [Faiga Alawad](https://github.com/Faiga91) for the submission
___
#### U-Net
![U-Net](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/U-Net.png?raw=true)
Credits to [Luca Marini](https://github.com/lucamarini22) for the submission
___
#### 1D Complex-Valued Neural Network (CVNN)
![1D-CVNN](https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams/blob/main/1D%20Complex-Valued%20Neural%20Network%20(CVNN).svg?raw=true)
Credits to [Moh Kashani](https://github.com/mkashani-phd) for the submission___
## Contributing
- Have you built certain architecture diagrams with diagrams.net which you would like to share with everyone? You're welcome to contribute with a pull request! (Credits will given to you)