https://github.com/kentaroy47/kaggle-nflimpact-13thplace
Solution of team tara: Public 7th, Private 13th (The renewed pipeline scores 8th place)
https://github.com/kentaroy47/kaggle-nflimpact-13thplace
3d-classification kaggle pytorch video-recognition
Last synced: about 1 month ago
JSON representation
Solution of team tara: Public 7th, Private 13th (The renewed pipeline scores 8th place)
- Host: GitHub
- URL: https://github.com/kentaroy47/kaggle-nflimpact-13thplace
- Owner: kentaroy47
- License: mit
- Created: 2021-01-26T04:42:57.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2021-01-28T04:05:37.000Z (almost 5 years ago)
- Last Synced: 2025-04-03T18:09:01.532Z (8 months ago)
- Topics: 3d-classification, kaggle, pytorch, video-recognition
- Language: Jupyter Notebook
- Homepage:
- Size: 15.5 MB
- Stars: 9
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 13th place solution of team tara

This is our team's solution for [Kaggle NFL 1st and Future - Impact Detection](https://www.kaggle.com/c/nfl-impact-detection)
Work by team tara: [@tereka](https://www.kaggle.com/tereka) [@hidehisaarai1213](https://www.kaggle.com/hidehisaarai1213) [@rishigami](https://www.kaggle.com/rishigami) [@arutema47](https://www.kaggle.com/kyoshioka47)
Public: 7th 0.5503
Private: 13th 0.5017
fix.. Private: 8th 0.5337
## Overview
[Solution writeup](https://www.kaggle.com/c/nfl-impact-detection/discussion/208801)
[Submitted inference code](https://www.kaggle.com/kyoshioka47/pp-mod-of-2-stage-3d?scriptVersionId=51447826)
.png?generation=1609822336590711&alt=media)
# Preparation
`pip install -r requirements.txt`
1. `train-prepare-labels.ipynb`でラベルと画像データを書き出し
Write out training images with `train-prepare-labels.ipynb`
2.`prepare_classification_images.ipynb`でclassification用データを書き出し
Write out classification images with `prepare_classification_images.ipynb`
3. pretrainフォルダにeffdetの事前学習モデルを入れておく
Place effdet pretrained models inside `pretrain` folder.
# train
for end model:
`python train_1ststage.py --enum 15 --modeltype Endzone --cutmix --strech 3 --imsize 1024 --bs 3 --all --effdet effdet4 --lr 1e-4`
for side model:
`python train_1ststage.py --enum 15 --modeltype Sideline --cutmix --strech 3 --imsize 1024 --bs 3 --all --effdet effdet4 --lr 1e-4`
classification
`python train_2ndstage.py --all`
# Check CV
1. 1ststage-inferenceでdetection結果を取得
Get inference results with `1st-stage-Inference.ipynb`
2.2nd stage-inferenceでclassification。
CLassify with `2nd-stage-Inference.ipynb`
CV: `0.47~0.5`