Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kentaroy47/point-cloud-neural-networks
Study works using point cloud+neural networks
https://github.com/kentaroy47/point-cloud-neural-networks
Last synced: 5 days ago
JSON representation
Study works using point cloud+neural networks
- Host: GitHub
- URL: https://github.com/kentaroy47/point-cloud-neural-networks
- Owner: kentaroy47
- Created: 2019-02-25T06:39:03.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-02-25T07:30:44.000Z (almost 6 years ago)
- Last Synced: 2025-01-20T23:52:39.145Z (12 days ago)
- Size: 7.81 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Point-Cloud-Neural-Networks
Works using point cloud and neural networks.## Point cloud CNN.
### CVPR 2017
[PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation](https://arxiv.org/abs/1612.00593)Authors: Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas
Classification, segmentation.
### NIPS 2017.
[PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413)Authors: Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas
### CVPR 2018.
[So-net: Self-organizing network for point cloud analysis](http://openaccess.thecvf.com/content_cvpr_2018/html/Li_SO-Net_Self-Organizing_Network_CVPR_2018_paper.html)Authors: J Li, BM Chen, G Hee Lee
[PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation](http://openaccess.thecvf.com/content_cvpr_2018/html/Xu_PointFusion_Deep_Sensor_CVPR_2018_paper.html)
Authors: Danfei Xu, Dragomir Anguelov, Ashesh Jain;
[Pointwise convolutional neural networks](http://openaccess.thecvf.com/content_cvpr_2018/html/Hua_Pointwise_Convolutional_Neural_CVPR_2018_paper.html)
Authors: BS Hua, MK Tran, SK Yeung
[Neural 3d mesh renderer](http://openaccess.thecvf.com/content_cvpr_2018/html/Kato_Neural_3D_Mesh_CVPR_2018_paper.html)
Authors: H Kato, Y Ushiku, T Harada
### ICRA 2018.
[SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud](https://arxiv.org/abs/1710.07368)### arXiv
## LiDAR-Camera Fusion
[Frustum pointnets for 3d object detection from rgb-d data](http://openaccess.thecvf.com/content_cvpr_2018/html/Qi_Frustum_PointNets_for_CVPR_2018_paper.html)Authors: CR Qi, W Liu, C Wu, H Su, Leonidas J. Guibas
## Bird-view approach
・[Slideshare](https://www.slideshare.net/takmin/20181130-lidar-object-detection-survey)・[Pixor: Real-time 3d object detection from point clouds](http://openaccess.thecvf.com/content_cvpr_2018/html/Yang_PIXOR_Real-Time_3D_CVPR_2018_paper.html)
Authors: B Yang, W Luo, R Urtasun, CVPR2018.
・点群を地面と平行にスライスし、各点群を画像チャネルとしてCNNへ入力。
・[Fusing bird view lidar point cloud and front view camera image for deep object detection](https://arxiv.org/abs/1711.06703)
Authors: Z Wang, W Zhan, M Tomizuka (Not really point cloud NN, but interesting approach.)
[Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object Detection on Point Clouds](https://link.springer.com/chapter/10.1007/978-3-030-11009-3_11)
Authors: M Simon, S Milz, K Amende, HM Gross, ECCV 2018.
## Graph Convolution
[Dynamic graph cnn for learning on point clouds](https://arxiv.org/abs/1801.07829)Authors: Y Wang, Y Sun, Z Liu, SE Sarma, MM Bronstein
## Voxel approach
[Voxelnet: End-to-end learning for point cloud based 3d object detection](http://openaccess.thecvf.com/content_cvpr_2018/html/Zhou_VoxelNet_End-to-End_Learning_CVPR_2018_paper.html)Authors: Y Zhou, O Tuzel, CVPR2018.
## Others
[Pedestrian-Detection Method based on 1D-CNN during LiDAR Rotation](https://ieeexplore.ieee.org/abstract/document/8569014)Authors: Yuki Kunisada ; Takayoshi Yamashita ; Hironobu Fujiyoshi, ICTS.
### slideshare
[CVPR2018のPointCloudのCNN論文とSPLATNet](https://www.slideshare.net/takmin/cvpr2018pointcloudcnnsplatnet)## TBD
add technical points to each work.