Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/keras-team/autokeras
AutoML library for deep learning
https://github.com/keras-team/autokeras
autodl automated-machine-learning automl deep-learning keras machine-learning neural-architecture-search python tensorflow
Last synced: about 23 hours ago
JSON representation
AutoML library for deep learning
- Host: GitHub
- URL: https://github.com/keras-team/autokeras
- Owner: keras-team
- License: apache-2.0
- Created: 2017-11-19T23:18:20.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-12-16T18:00:41.000Z (29 days ago)
- Last Synced: 2025-01-12T01:33:05.956Z (3 days ago)
- Topics: autodl, automated-machine-learning, automl, deep-learning, keras, machine-learning, neural-architecture-search, python, tensorflow
- Language: Python
- Homepage: http://autokeras.com/
- Size: 43.4 MB
- Stars: 9,177
- Watchers: 301
- Forks: 1,404
- Open Issues: 147
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: .github/CODE_OF_CONDUCT.md
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
- awesome-meteo - AutoKeras
- awesome-llmops - autokeras - team/autokeras.svg?style=flat-square) | (AutoML / Profiling)
- awesome-keras - autokeras - AutoML library for deep learning. (Core Libraries)
- Awesome-Tensorflow2 - keras-team/autokeras
- AwesomeResponsibleAI - AutoKeras
- awesome-list - AutoKeras - AutoML library for deep learning. (Deep Learning Framework / Auto ML & Hyperparameter Optimization)
- awesome-machine-learning-resources - **[Library - team/autokeras?style=social) (Table of Contents)
- awesome-mlops - AutoKeras - AutoKeras goal is to make machine learning accessible for everyone. (AutoML)
- awesome-python-machine-learning-resources - GitHub - 11% open · ⏱️ 25.08.2022): (超参数优化和AutoML)
- awesome-production-machine-learning - Autokeras - team/autokeras.svg?style=social) - AutoML library for Keras based on ["Auto-Keras: Efficient Neural Architecture Search with Network Morphism"](https://arxiv.org/abs/1806.10282). (AutoML)
README
[![](https://github.com/keras-team/autokeras/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/autokeras/actions?query=workflow%3ATests+branch%3Amaster)
[![codecov](https://codecov.io/gh/keras-team/autokeras/branch/master/graph/badge.svg)](https://codecov.io/gh/keras-team/autokeras)
[![PyPI version](https://badge.fury.io/py/autokeras.svg)](https://badge.fury.io/py/autokeras)
[![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/autokeras/issues)Official Website: [autokeras.com](https://autokeras.com)
##
AutoKeras: An AutoML system based on Keras.
It is developed by DATA Lab at Texas A&M University.
The goal of AutoKeras is to make machine learning accessible to everyone.## Learning resources
* A short example.
```python
import autokeras as akclf = ak.ImageClassifier()
clf.fit(x_train, y_train)
results = clf.predict(x_test)
```* [Official website tutorials](https://autokeras.com/tutorial/overview/).
* The book of [*Automated Machine Learning in Action*](https://www.manning.com/books/automated-machine-learning-in-action?query=automated&utm_source=jin&utm_medium=affiliate&utm_campaign=affiliate&a_aid=jin).
* The LiveProjects of [*Image Classification with AutoKeras*](https://www.manning.com/liveprojectseries/autokeras-ser).## Installation
To install the package, please use the `pip` installation as follows:
```shell
pip3 install autokeras
```Please follow the [installation guide](https://autokeras.com/install) for more details.
**Note:** Currently, AutoKeras is only compatible with **Python >= 3.7** and **TensorFlow >= 2.8.0**.
## Community
Ask your questions on our [GitHub Discussions](https://github.com/keras-team/autokeras/discussions).
## Contributing Code
Here is how we manage our project.
We pick the critical issues to work on from [GitHub issues](https://github.com/keras-team/autokeras/issues).
They will be added to this [Project](https://github.com/keras-team/autokeras/projects/3).
Some of the issues will then be added to the [milestones](https://github.com/keras-team/autokeras/milestones),
which are used to plan for the releases.Refer to our [Contributing Guide](https://autokeras.com/contributing/) to learn the best practices.
Thank all the contributors!
[![The contributors](https://autokeras.com/img/contributors.svg)](https://github.com/keras-team/autokeras/graphs/contributors)
## Cite this work
Haifeng Jin, François Chollet, Qingquan Song, and Xia Hu. "AutoKeras: An AutoML Library for Deep Learning." *the Journal of machine Learning research* 6 (2023): 1-6. ([Download](http://jmlr.org/papers/v24/20-1355.html))
Biblatex entry:
```bibtex
@article{JMLR:v24:20-1355,
author = {Haifeng Jin and François Chollet and Qingquan Song and Xia Hu},
title = {AutoKeras: An AutoML Library for Deep Learning},
journal = {Journal of Machine Learning Research},
year = {2023},
volume = {24},
number = {6},
pages = {1--6},
url = {http://jmlr.org/papers/v24/20-1355.html}
}
```## Acknowledgements
The authors gratefully acknowledge the D3M program of the Defense Advanced Research Projects Agency (DARPA) administered through AFRL contract FA8750-17-2-0116; the Texas A&M College of Engineering, and Texas A&M University.