Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/keurfonluu/disba
Numba-accelerated computation of surface wave dispersion
https://github.com/keurfonluu/disba
dispersion geosciences python seismology surf96 surface-wave
Last synced: 3 months ago
JSON representation
Numba-accelerated computation of surface wave dispersion
- Host: GitHub
- URL: https://github.com/keurfonluu/disba
- Owner: keurfonluu
- License: bsd-3-clause
- Created: 2020-06-18T04:57:57.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-12-12T23:28:27.000Z (almost 3 years ago)
- Last Synced: 2024-07-10T10:34:09.054Z (4 months ago)
- Topics: dispersion, geosciences, python, seismology, surf96, surface-wave
- Language: Python
- Homepage: https://github.com/keurfonluu/disba
- Size: 4.79 MB
- Stars: 129
- Watchers: 10
- Forks: 30
- Open Issues: 1
-
Metadata Files:
- Readme: README.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.rst
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-open-geoscience - disba - accelerated computation of surface wave dispersion. (Software / Simulation and Modelling)
README
disba
=====|License| |Stars| |Pyversions| |Version| |Downloads| |Code style: black| |Codacy Badge| |Codecov| |Build| |Travis| |Awesome| |DOI|
**disba** is a computationally efficient Python library for the modeling of surface wave dispersion that implements a subset of codes from `Computer Programs in Seismology (CPS) `__ in Python compiled `just-in-time `__ with `numba `__. Such implementation alleviates the usual prerequisite for a Fortran compiler needed by other libraries also based on CPS (e.g., `pysurf96 `__, `srfpython `__ and `PyLayeredModel `__) which often leads to further installation troubleshooting, especially on Windows platform.
**disba** aims to be lightweight and portable without compromising on the performance. For both Rayleigh-wave and Love-wave, it is significantly faster than CPS's *surf96* program compiled with `f2py `__, noticeably for large number of layers.
.. list-table::
* - |Perf Rayleigh|
- |Perf Love|Features
--------Forward modeling:
- Compute Rayleigh-wave phase or group dispersion curves using *Dunkin's matrix* or *fast delta matrix* algorithms,
- Compute Love-wave phase or group dispersion curves using *Thomson-Haskell* method,
- Compute Rayleigh-wave ellipticity.Eigenfunctions and sensitivity kernels:
- Compute Rayleigh- and Love- wave eigenfunctions,
- Compute Rayleigh- and Love- wave phase or group velocity, and Rayleigh-wave ellipticity sensitivity kernels with respect to layer thickness, P- and S- wave velocities, and density.Installation
------------The recommended way to install **disba** and all its dependencies is through the Python Package Index:
.. code:: bash
pip install disba[full] --user
Otherwise, clone and extract the package, then run from the package location:
.. code:: bash
pip install .[full] --user
To test the integrity of the installed package, check out this repository and run:
.. code:: bash
pytest
Documentation
-------------Refer to the online `documentation `__ for detailed description of the API and examples.
Alternatively, the documentation can be built using `Sphinx `__:
.. code:: bash
pip install -r doc/requirements.txt
sphinx-build -b html doc/source doc/buildUsage
-----The following example computes the Rayleigh- and Love- wave phase velocity dispersion curves for the 3 first modes.
.. code:: python
import numpy as np
from disba import PhaseDispersion# Velocity model
# thickness, Vp, Vs, density
# km, km/s, km/s, g/cm3
velocity_model = np.array([
[10.0, 7.00, 3.50, 2.00],
[10.0, 6.80, 3.40, 2.00],
[10.0, 7.00, 3.50, 2.00],
[10.0, 7.60, 3.80, 2.00],
[10.0, 8.40, 4.20, 2.00],
[10.0, 9.00, 4.50, 2.00],
[10.0, 9.40, 4.70, 2.00],
[10.0, 9.60, 4.80, 2.00],
[10.0, 9.50, 4.75, 2.00],
])# Periods must be sorted starting with low periods
t = np.logspace(0.0, 3.0, 100)# Compute the 3 first Rayleigh- and Love- wave modal dispersion curves
# Fundamental mode corresponds to mode 0
pd = PhaseDispersion(*velocity_model.T)
cpr = [pd(t, mode=i, wave="rayleigh") for i in range(3)]
cpl = [pd(t, mode=i, wave="love") for i in range(3)]# pd returns a namedtuple (period, velocity, mode, wave, type)
.. list-table::
* - |Sample Rayleigh|
- |Sample Love|Likewise, ``GroupDispersion`` can be used for group velocity.
**disba**'s API is consistent across all its classes which are initialized and called in the same fashion. Thus, eigenfunctions are calculated as follow:
.. code:: python
from disba import EigenFunction
eigf = EigenFunction(*velocity_model.T)
eigr = eigf(20.0, mode=0, wave="rayleigh")
eigl = eigf(20.0, mode=0, wave="love")# eigf returns a namedtuple
# - (depth, ur, uz, tz, tr, period, mode) for Rayleigh-wave
# - (depth, uu, tt, period, mode) for Love-wave.. list-table::
* - |Eigen Rayleigh|
- |Eigen Love|Phase velocity sensitivity kernels (``GroupSensitivity`` for group velocity):
.. code:: python
from disba import PhaseSensitivity
ps = PhaseSensitivity(*velocity_model.T)
parameters = ["thickness", "velocity_p", "velocity_s", "density"]
skr = [ps(20.0, mode=0, wave="rayleigh", parameter=parameter) for parameter in parameters]
skl = [ps(20.0, mode=0, wave="love", parameter=parameter) for parameter in parameters]# ps returns a namedtuple (depth, kernel, period, velocity, mode,wave, type, parameter)
.. list-table::
* - |Kernel Rayleigh|
- |Kernel Love|Ellipticity and ellipticity sensitivity kernels:
.. code:: python
from disba import Ellipticity, EllipticitySensitivity
ell = Ellipticity(*velocity_model.T)
rel = ell(t, mode=0)# ell returns a namedtuple (period, ellipticity, mode)
es = EllipticitySensitivity(*velocity_model.T)
ek = [es(20.0, mode=0, parameter=parameter) for parameter in parameters]# es returns a namedtuple (depth, kernel, period, velocity, mode, wave, type, parameter)
.. list-table::
* - |Sample Ellipticity|
- |Kernel Ellipticity|Contributing
------------Please refer to the `Contributing
Guidelines `__ to see how you can help. This project is released with a `Code of Conduct `__ which you agree to abide by when contributing... |License| image:: https://img.shields.io/github/license/keurfonluu/disba
:target: https://github.com/keurfonluu/disba/blob/master/LICENSE.. |Stars| image:: https://img.shields.io/github/stars/keurfonluu/disba?logo=github
:target: https://github.com/keurfonluu/disba.. |Pyversions| image:: https://img.shields.io/pypi/pyversions/disba.svg?style=flat
:target: https://pypi.org/pypi/disba/.. |Version| image:: https://img.shields.io/pypi/v/disba.svg?style=flat
:target: https://pypi.org/project/disba.. |Downloads| image:: https://pepy.tech/badge/disba
:target: https://pepy.tech/project/disba.. |Code style: black| image:: https://img.shields.io/badge/code%20style-black-000000.svg?style=flat
:target: https://github.com/psf/black.. |Codacy Badge| image:: https://img.shields.io/codacy/grade/1d2218bb7d0e4e0fb2dec26fa32fe92e.svg?style=flat
:target: https://www.codacy.com/manual/keurfonluu/disba?utm_source=github.com&utm_medium=referral&utm_content=keurfonluu/disba&utm_campaign=Badge_Grade.. |Codecov| image:: https://img.shields.io/codecov/c/github/keurfonluu/disba.svg?style=flat
:target: https://codecov.io/gh/keurfonluu/disba.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3987395.svg?style=flat
:target: https://doi.org/10.5281/zenodo.3987395.. |Build| image:: https://img.shields.io/github/workflow/status/keurfonluu/disba/Python%20package
:target: https://github.com/keurfonluu/disba.. |Travis| image:: https://img.shields.io/travis/com/keurfonluu/disba/master?label=docs
:target: https://keurfonluu.github.io/disba/.. |Awesome| image:: https://img.shields.io/badge/awesome-yes-C6A4BF
:target: https://github.com/softwareunderground/awesome-open-geoscience.. |Perf Rayleigh| image:: https://raw.githubusercontent.com/keurfonluu/disba/e29865fb0b385b295bc55b733a138a741787879d/.github/perf_rayleigh.svg
:alt: perf-rayleigh.. |Perf Love| image:: https://raw.githubusercontent.com/keurfonluu/disba/5d23a8bb3967fd59c1a38b59ce1bf800749c7eb2/.github/perf_love.svg
:alt: perf-love.. |Sample Rayleigh| image:: https://raw.githubusercontent.com/keurfonluu/disba/5d23a8bb3967fd59c1a38b59ce1bf800749c7eb2/.github/sample_rayleigh.svg
:alt: sample-rayleigh.. |Sample Love| image:: https://raw.githubusercontent.com/keurfonluu/disba/5d23a8bb3967fd59c1a38b59ce1bf800749c7eb2/.github/sample_love.svg
:alt: sample-love.. |Sample Ellipticity| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/sample_ellipticity.svg
:alt: sample-ellipticity.. |Eigen Rayleigh| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/eigen_rayleigh.svg
:alt: eigen-rayleigh.. |Eigen Love| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/eigen_love.svg
:alt: eigen-love.. |Kernel Rayleigh| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/kernel_rayleigh.svg
:alt: kernel-rayleigh.. |Kernel Love| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/kernel_love.svg
:alt: kernel-love.. |Kernel Ellipticity| image:: https://raw.githubusercontent.com/keurfonluu/disba/5f9b95a144e3751ffa98b5860663af874c02ae1c/.github/kernel_ellipticity.svg
:alt: kernel-ellipticity