An open API service indexing awesome lists of open source software.

https://github.com/kevinhongzl/medaset

A collection of pre-built dataset classes for medical datasets.
https://github.com/kevinhongzl/medaset

deep-learning medical-image-processing monai python3 pytorch

Last synced: 1 day ago
JSON representation

A collection of pre-built dataset classes for medical datasets.

Awesome Lists containing this project

README

          

# Medaset
> A collection of pre-built dataset classes for **MED**ical dat**ASET**s.

[![python](https://img.shields.io/badge/Python-3.8.17-3776AB.svg?style=flat&logo=python&logoColor=white)](https://www.python.org) [![monai-shieldio](https://img.shields.io/badge/MONAI-1.0.1-5ec2b3.svg?logo=)](https://github.com/project-monai/monai) [![pytorch](https://img.shields.io/badge/PyTorch-1.12.1-EE4C2C.svg?style=flat&logo=pytorch)](https://pytorch.org) [![Code style: black](https://img.shields.io/badge/Code%20Style-Black-000000.svg)](https://github.com/psf/black)

**Objectives**

* Compatible to [`PyTorch`](https://pytorch.org/docs/stable/index.html) and [`MONAI`](https://monai.io/)
* Providing some off-the-shelf features to the `Dataset` class, including but not limited to, dataset extracting, loading and visualization.

### Getting started
`git clone` this repo and install it using

```bash
pip install -e .
```

> [!CAUTION]
> Naming convention changed!! For the sake of readibility, only the first letters in each acronym are now capitalized.

## Currently Supported Datasets

* **AMOS (Abdominal Multi-Organ Segmentation)**
[[Grand Challenge]](https://amos22.grand-challenge.org/) [[Arxiv]](https://arxiv.org/abs/2206.08023)
* AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs.
* Structure: spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder, prostate/uterus.
* Dataset classes: `AmosDataset`, `SimpleAmosDataset`
---
* **CHAOS (Combined (CT-MR) Healthy Abdominal Organ Segmentation)**
[[Grand Challenge]](https://chaos.grand-challenge.org/) [[Arxiv]](https://arxiv.org/abs/2001.06535)
* The CHAOS challenge data contains 40 CT scans and 40 MR scans of upper abdomen area.
* Structure (Modality): Liver (CT/MR), Kidneys (MR), Spleen (MR)
* Dataset classes: `ChaosCtDataset`, `ChaosT2spirDataset` (The T1-DUAL sequence is not supported currently)
---
* **SMAT (Skeletal Muscle and Adipose Tissue)**
* Private dataset
* Dataset classes: `SmatCtDataset`, `SmatMrDataset`, `SmatDataset`

## Useful Links

**Metadata Desciptions**
* [NIfTI file header discriptions](https://brainder.org/2012/09/23/the-nifti-file-format/)
* [DICOM Standard Browser](https://dicom.innolitics.com/ciods)

**Medical Image Coordinate Systems**
* [An Introduction from 3D Slicer](https://slicer.readthedocs.io/en/latest/user_guide/coordinate_systems.html)
* [An Introduction of coordinate systems and affines from nipy.org](https://nipy.org/nibabel/coordinate_systems.html)
* [Defining the DICOM orientation](https://nipy.org/nibabel/dicom/dicom_orientation.html)
* [Geometry in Medical Imaging: DICOM and NIfTI formats](https://discovery.ucl.ac.uk/id/eprint/10146893/1/geometry_medim.pdf)
* [The First Step for Neuroimaging Data Analysis: DICOM to NIfTI conversion](https://core.ac.uk/download/pdf/79518053.pdf)