Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kevinzakka/form2fit
[ICRA 2020] Train generalizable policies for kit assembly with self-supervised dense correspondence learning.
https://github.com/kevinzakka/form2fit
deep-learning perception pytorch robotics self-supervised-learning
Last synced: 2 months ago
JSON representation
[ICRA 2020] Train generalizable policies for kit assembly with self-supervised dense correspondence learning.
- Host: GitHub
- URL: https://github.com/kevinzakka/form2fit
- Owner: kevinzakka
- License: mit
- Created: 2019-09-23T05:28:53.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-10-12T09:17:38.000Z (about 4 years ago)
- Last Synced: 2024-04-14T18:18:23.092Z (9 months ago)
- Topics: deep-learning, perception, pytorch, robotics, self-supervised-learning
- Language: Python
- Homepage: https://form2fit.github.io/
- Size: 53.5 MB
- Stars: 81
- Watchers: 13
- Forks: 23
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Form2Fit
Code for the paper
**[Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly][1]**
*Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song*
[arxiv.org/abs/1910.13675][2]
ICRA 2020
This repository contains:
- The [Form2Fit Benchmark](docs/about_benchmark.md)
- Code to [download and process](#data) the benchmark datasets.
- Code to [evaluate](docs/evaluate_benchmark.md) any model's performance on the benchmark test set.
- Code to [reproduce](docs/paper_code.md) the paper results:
- Architectures, dataloaders and losses for suction, place and matching networks.
- Planner module for intergrating all the outputs.
- Baseline implementation.If you find this code useful, consider citing our work:
```
@inproceedings{zakka2020form2fit,
title={Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly},
author={Zakka, Kevin and Zeng, Andy and Lee, Johnny and Song, Shuran},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation},
year={2020}
}
```### Documentation
- [setup](docs/setup.md)
- [about the Form2Fit benchmark](docs/about_benchmark.md)
- [reproducing paper results](docs/paper_code.md)
- [evaluating a trained model](docs/evaluate_benchmark.md)
- [model weights](docs/model_weights.md)
- [conventions](docs/conventions.md)### Todos
- [ ] Add processed generalization partition (combinations, mixtures and unseen) to benchmark.
- [ ] Add code for training the different networks.### Note
This is not an officially supported Google product.
[1]: https://form2fit.github.io/
[2]: https://arxiv.org/abs/1910.13675