Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/khanhlvg/my-profile
This repository contains my speaker profile and the list of talks that I gave in the past.
https://github.com/khanhlvg/my-profile
Last synced: about 1 month ago
JSON representation
This repository contains my speaker profile and the list of talks that I gave in the past.
- Host: GitHub
- URL: https://github.com/khanhlvg/my-profile
- Owner: khanhlvg
- License: apache-2.0
- Created: 2020-07-31T02:38:53.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-01-05T00:42:22.000Z (about 3 years ago)
- Last Synced: 2024-10-29T15:44:48.449Z (3 months ago)
- Size: 163 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Biography
Khanh LeViet, TensorFlow Developer Advocate, Google Inc.
## English
Khanh LeViet is a TensorFlow Developer Advocate at Google, helping developers to create amazing applications with Edge AI. He speaks at technology conferences, writes and publishes sample code on GitHub. Before his journey with AI, Khanh was a mobile developer working on both Android and iOS.## Japanese
Google で Edge AI に関するグローバルの啓蒙活動を担当しています。私のミッションは、TensorFlow Lite をはじめ、Android ML などのオンデバイス機械学習のライブラリーを組み合わせて、エッジデバイスでの機械学習のアプリケーションを世の中に広めることです。AI/ML分野に身を置く前に、モバイルアプリの開発(Firebase、Android、Google Play、iOS など)に長く関わりました。
## Photos
* [Photo1](photos/1.jpeg)
* [Photo2](photos/2.jpeg)# Past work
## 2021
### Videos
* [TensorFlow Lite Object Detection on Raspberry Pi](https://www.youtube.com/watch?v=mNjXEybFn98&list=PLQY2H8rRoyvz_anznBg6y3VhuSMcpN9oe)
* [Build and deploy custom object detection model with TensorFlow Lite | Workshop@Google I/O 2021](https://youtu.be/vLxn5mOuWAk)
* [Get started with object detection (On-device ML learning pathway)](https://developers.google.com/learn/pathways/get-started-object-detection)
* [Go further with object detection (On-device ML learning pathway)](https://developers.google.com/learn/pathways/going-further-object-detection)
* [Get started with product image search (On-device ML learning pathway)](https://developers.google.com/learn/pathways/get-started-image-product-search)
* [Go further with product image search (On-device ML learning pathway)](https://developers.google.com/learn/pathways/going-further-image-product-search)
* [Machine learning - Zero to Hero (Vietnamese)](https://www.youtube.com/watch?v=NVsw-JrXv9I&list=PLQY2H8rRoyvxNqk9EV5VP5fS0cWEXW5QQ)### Blog posts / Tutorials
* [Pose estimation and classification on edge devices with MoveNet and TensorFlow Lite](https://blog.tensorflow.org/2021/08/pose-estimation-and-classification-on-edge-devices-with-MoveNet-and-TensorFlow-Lite.html?linkId=127860904)
* [Easier object detection on mobile with TensorFlow Lite](https://blog.tensorflow.org/2021/06/easier-object-detection-on-mobile-with-tf-lite.html)### Samples
* [MoveNet pose estimation (Android/iOS/Raspberry Pi)](https://github.com/tensorflow/examples/tree/master/lite/examples/pose_estimation)
* [Pose classification with TFLite and MoveNet](https://www.tensorflow.org/lite/tutorials/pose_classification)
* [Sound classification (Android)](https://github.com/tensorflow/examples/tree/master/lite/examples/sound_classification/android)
* [Image Classification (Raspberry Pi)](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/raspberry_pi)
* [Object Detection (Raspberry Pi)](https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/raspberry_pi)
* [Image Segmentation (Raspberry Pi)](https://github.com/tensorflow/examples/tree/master/lite/examples/image_segmentation/raspberry_pi)## 2020
### Videos
* [Introduction to Edge ML (Japanese)](https://cloudonair.withgoogle.com/events/google-mlsummit?talk=d1-session4)
* [Intro to On-device Machine Learning (TF Fall 2020 Updates)](https://www.youtube.com/watch?v=Zg0t3f90n6Q)
* [Training and deploying ML models on edge devices (TF Fall 2020 Updates)](https://www.youtube.com/watch?v=0d-2551pQcM)
* [Build a custom image classification app on Android](https://youtu.be/s_XOVkjXQbU)
* [ML Bootcamp for Mobile Developers](https://youtu.be/uMokEy_921Q?t=290)
* [Introduction to Edge AI with TensorFlow Lite and Coral (Japanese)](https://youtu.be/pIilIDY1v4g?list=PLx--cSjgRP_RQdOWJkktvswaHJH0Sko6G)
* [TF Lite Training (Get Started)](https://drive.google.com/file/d/1aM3HhMWEsOdUehZMkEb-Efz5PtD371UZ/view?usp=sharing)
* [TF Lite Training (Advanced)](https://drive.google.com/file/d/1o_EMae0N9pGRhMpJjrPvIBNekRcAXQlq/view?usp=sharing)
* [What's new in TF Lite from TF DevSummit](https://youtu.be/shqlDPJxBe0)
* [What's new in TF Lite from TF DevSummit (Japanese)](https://youtu.be/tURVY61FQdA?t=5143)
* [Android 11 Meetups - Machine Learning (Japanese)](https://developersonair.withgoogle.com/events/a11meetups-jp/watch?talk=ml)### Blog posts / Tutorials
* [How TensorFlow Lite helps you from prototype to product](https://blog.tensorflow.org/2020/04/how-tensorflow-lite-helps-you-from-prototype-to-product.html)
* [What’s new in TensorFlow Lite from DevSummit 2020](https://blog.tensorflow.org/2020/04/whats-new-in-tensorflow-lite-from-devsummit-2020.html)
* [Enhance your TensorFlow Lite deployment with Firebase](https://blog.tensorflow.org/2020/06/enhance-your-tensorflow-lite-deployment-with-firebase.html)
* [Optimizing style transfer to run on mobile with TFLite](https://blog.tensorflow.org/2020/04/optimizing-style-transfer-to-run-on-mobile-with-tflite.html)
* [Easy ML mobile development with TensorFlow Lite Task Library](https://blog.tensorflow.org/2020/09/introducing-tensorflow-lite-task-library.html)
* [Build sound classification models for mobile apps with Teachable Machine and TFLite](https://blog.tensorflow.org/2020/12/build-sound-classification-models-for-mobile-apps-with-teachable-machine-and-tflite.html)### Samples
* Working closely with the TF Lite community to publish a series of tutorials, pre-trained models and samples to show what is possible with cutting edge Edge AI.
* [Converting your selfie to anime](https://twitter.com/margaretmz/status/1283240808443809793)
* Here are our [on-going projects](https://github.com/ml-gde/e2e-tflite-tutorials/issues).## 2019 and earlier
### Videos
* [Introduction to Machine Learning (English/Chinese)](https://www.bilibili.com/video/av68057077/)
* [Recap of TF Lite annoucement at TF World 2019 (Japanese)](https://youtu.be/c1WdEpssND8?t=1477)
* [What's new in ML Kit (Japanese)](https://youtu.be/0-sDBk7Rv-w)
* [Firebase recipes to bootstrap your app](https://youtu.be/_ErGooSuTPA)
* [Firebase recipes to bootstrap your app (Japanese)](https://youtu.be/Hckk2tyBQq0?list=PL6JjkP52HWex-oX7-zGAbAiak3XxaY5aJ)### Blog posts / Tutorials
* [Codelabs: Train and deploy on-device image classification model with AutoML Vision in ML Kit](https://codelabs.developers.google.com/codelabs/automl-vision-edge-in-mlkit/#0)
* [Firebase blog: Authenticate your Firebase users with LINE Login](https://firebase.googleblog.com/2016/11/authenticate-your-firebase-users-with-line-login.html)### Samples
* [AutoML Vision for ML Kit codelab for Android and iOS](https://github.com/googlecodelabs/automl-vision-edge-in-mlkit/)
* [Build a handwritten digit classifier app with TensorFlow Lite](https://codelabs.developers.google.com/codelabs/digit-classifier-tflite/#0)
* [TF Lite Image Segmentation on iOS](https://github.com/tensorflow/examples/tree/master/lite/examples/image_segmentation)
* [TF Lite Text Classification on Android](https://github.com/tensorflow/examples/tree/master/lite/examples/text_classification/android)
* [TF Lite Style Transfer](https://www.tensorflow.org/lite/models/style_transfer/overview)
* [TF Lite Digit Classifier](https://github.com/tensorflow/examples/tree/master/lite/examples/digit_classifier)