Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/khanovico/cifar-trgan-torch
CIFAR10 image generation using fully-transformer-GAN with pytorch
https://github.com/khanovico/cifar-trgan-torch
gan image-generation pytorch transformer
Last synced: 19 days ago
JSON representation
CIFAR10 image generation using fully-transformer-GAN with pytorch
- Host: GitHub
- URL: https://github.com/khanovico/cifar-trgan-torch
- Owner: khanovico
- License: mit
- Created: 2024-06-23T18:39:04.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-06-25T12:01:25.000Z (8 months ago)
- Last Synced: 2024-11-25T02:07:36.718Z (3 months ago)
- Topics: gan, image-generation, pytorch, transformer
- Language: Python
- Homepage:
- Size: 61.1 MB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# TrGAN
Generation of CIFAR10 images based on TrGAN (hands-on):
## Dependencies
- Python 3.8
- Tensorfow 2.5## Usage
### Train
1. Use `--dataset_path=` to specify the dataset path (default builds CIFAR-10 dataset), and `--model_name=` to specify the checkpoint directory name.
```
python train.py --dataset_path= --model_name=
```### Hparams setting
Adjust hyperparameters in the `hparams.py` file.
### Tensorboard
Run `tensorboard --logdir ./`.
## Examples
- CIFAR-10 training progress
![](images/transgan_samples.gif "TransGAN on CIFAR-10")
## References
Code:
- This model depends on other files that may be licensed under different open source licenses.
- TransGAN uses [Differentiable Augmentation](https://arxiv.org/abs/2006.10738). Under BSD 2-Clause "Simplified" License.
- Small-TransGAN models are instances of the original TransGAN architecture with a smaller number of layers and lower-dimensional embeddings.Implementation notes:
- Single layer per resolution Generator.
- Orthogonal initializer and 4 heads in both Generator and Discriminator.
- WGAN-GP loss.
- Adam with β1 = 0.0 and β2 = 0.99.
- Noise dimension = 64.
- Batch size = 64## Licence
MIT