Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/khirotaka/enchanter

Enchanter is a library for machine learning tasks for comet.ml users.
https://github.com/khirotaka/enchanter

comet-ml neural-network pytorch time-series

Last synced: 24 days ago
JSON representation

Enchanter is a library for machine learning tasks for comet.ml users.

Awesome Lists containing this project

README

        

# Enchanter
Enchanter is a library for machine learning tasks for comet.ml users.


Getting Started
Docs
Tutorial
Licence

[![Codacy Badge](https://api.codacy.com/project/badge/Grade/163d7df85c2548169a247bdaf576cb83)](https://app.codacy.com/gh/khirotaka/enchanter?utm_source=github.com&utm_medium=referral&utm_content=khirotaka/enchanter&utm_campaign=Badge_Grade_Settings)
[![Build & Publish](https://github.com/khirotaka/enchanter/workflows/Build%20&%20Publish/badge.svg)](https://github.com/khirotaka/enchanter/actions)
[![PyPI](https://img.shields.io/pypi/v/enchanter?color=brightgreen)](https://pypi.org/project/enchanter/)
[![Documentation Status](https://readthedocs.org/projects/enchanter/badge/?version=latest)](https://enchanter.readthedocs.io/)

[![CI macOS](https://github.com/khirotaka/enchanter/workflows/CI%20macOS/badge.svg)](https://github.com/khirotaka/enchanter/actions?query=workflow%3A%22CI+macOS%22)
[![CI Linux](https://github.com/khirotaka/enchanter/workflows/CI%20Linux/badge.svg)](https://github.com/khirotaka/enchanter/actions?query=workflow%3A%22CI+Linux%22)
[![license](https://img.shields.io/github/license/khirotaka/enchanter?color=light)](LICENSE)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Using PyTorch](https://img.shields.io/badge/PyTorch-red.svg?labelColor=f3f4f7&logo=)](https://pytorch.org/)

---

## Installation
To get started, [install PyTorch](https://pytorch.org) for your environment.
Then install Enchanter in the following way:

To install the stable release.
```shell script
pip install enchanter
```

or

To install the latest(unstable) release.
```shell script
pip install git+https://github.com/khirotaka/enchanter.git
```

If you want to install with a specific branch, you can use the following.
```shell script
# e.g.) Install enchanter from develop branch.
pip install git+https://github.com/khirotaka/enchanter.git@develop
```

### Supported Platforms
Enchanter supports:
* macOS 10.15
* Ubuntu 18.04 or later

## Getting Started
Try your first Enchanter Program. To train a neural network written in PyTorch on Enchanter, use the `Runner`.
There are 2 ways to define a `Runner`:

1. To use a `Runner` already implemented under `enchanter.tasks`
2. To define a custom `Runner` that inherit `enchanter.engine.BaseRunner`.

Let's see how to use the `enchanter.tasks.ClassificationRunner`, which is the easiest way.

### Training Neural Network

```python
import comet_ml
import torch
import enchanter

model = torch.nn.Linear(6, 10)
optimizer = torch.optim.Adam(model.parameters())

runner = enchanter.tasks.ClassificationRunner(
model,
optimizer,
criterion=torch.nn.CrossEntropyLoss(),
experiment=comet_ml.Experiment()
)

runner.add_loader("train", train_loader)
runner.train_config(epochs=10)
runner.run()
```

Register a `torch.utils.data.DataLoader` with the `Runner` by using `.add_loader()`.
Set up the number of epochs using `.train_config()`, and execute `Runner` with `.run()`.

### Training Unsupervised Time Series Feature Learning
The wonderful algorithms for unsupervised time series representation learning, adopted at [NeurIPS 2019](https://papers.nips.cc/paper/8713-unsupervised-scalable-representation-learning-for-multivariate-time-series), are now easily available.

Please prepare the following:

1. PyTorch Model that can output feature vectors of the same length regardless of the input series.
2. time series data consisting of `[N, F, L]`.
3. (Optional) A teacher label for each sample in `2.`

```python
import comet_ml
import torch.nn as nn
import torch.optim as optim
import enchanter.tasks as tasks
import enchanter.addons.layers as L

class Encoder(nn.Module):
def __init__(self, in_features, mid_features, out_features):
super(Encoder, self).__init__()
self.conv = nn.Sequential(
L.CausalConv1d(in_features, mid_features, 3),
nn.LeakyReLU(),
L.CausalConv1d(mid_features, mid_features, 3),
nn.LeakyReLU(),
L.CausalConv1d(mid_features, mid_features, 3),
nn.LeakyReLU(),
nn.AdaptiveMaxPool1d(1)
)
self.fc = nn.Linear(mid_features, out_features)

def forward(self, x):
batch = x.shape[0]
out = self.conv(x).reshape(batch, -1)
return self.fc(out)

experiment = comet_ml.Experiment()
model = Encoder(...)
optimizer = optim.Adam(model.parameters())

runner = tasks.TimeSeriesUnsupervisedRunner(model, optimizer, experiment)
runner.add_loader("train", ...)
runner.run()
```

A teacher label is required for validation. Also, Use `enchanter.callbacks.EarlyStoppingForTSUS` for early stopping.

### Hyper parameter searching using Comet.ml

```python
from comet_ml import Optimizer

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris

import enchanter.tasks as tasks
import enchanter.addons as addons
import enchanter.addons.layers as layers
from enchanter.utils import comet

config = comet.TunerConfigGenerator(
algorithm="bayes",
metric="train_avg_loss",
objective="minimize",
seed=0,
trials=1,
max_combo=10
)

config.suggest_categorical("activation", ["addons.mish", "torch.relu", "torch.sigmoid"])
opt = Optimizer(config.generate())

x, y = load_iris(return_X_y=True)
x = x.astype("float32")
y = y.astype("int64")

for experiment in opt.get_experiments():
model = layers.MLP([4, 512, 128, 3], eval(experiment.get_parameter("activation")))
optimizer = optim.Adam(model.parameters())
runner = tasks.ClassificationRunner(
model, optimizer=optimizer, criterion=nn.CrossEntropyLoss(), experiment=experiment
)

runner.fit(x, y, epochs=1, batch_size=32)
runner.quite()

# or
# with runner:
# runner.fit(...)
# or
# runner.run()

```

### Training with Mixed Precision
Runners with defined in `enchanter.tasks` are now support Auto Mixed Precision.
Write the following.

```python
from torch.cuda import amp
from enchanter.tasks import ClassificationRunner

runner = ClassificationRunner(...)
runner.scaler = amp.GradScaler()
```

If you want to define a custom runner that supports mixed precision, do the following.
```python
from torch.cuda import amp
import torch.nn.functional as F
from enchanter.engine import BaseRunner

class CustomRunner(BaseRunner):
# ...
def train_step(self, batch):
x, y = batch
with amp.autocast(): # REQUIRED
out = self.model(x)
loss = F.nll_loss(out, y)

return {"loss": loss}

runner = CustomRunner(...)
runner.scaler = amp.GradScaler()
```

That is, you can enable AMP by using `torch.cuda.amp.autocast()` in `.train_step()`, `.val_step()` and `.test_step()`.

### with-statement training

```python
from comet_ml import Experiment

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.datasets import load_iris
from tqdm.auto import tqdm

import enchanter.tasks as tasks
import enchanter.engine.modules as modules
import enchanter.addons as addons
import enchanter.addons.layers as layers

experiment = Experiment()
model = layers.MLP([4, 512, 128, 3], addons.mish)
optimizer = optim.Adam(model.parameters())

x, y = load_iris(return_X_y=True)
x = x.astype("float32")
y = y.astype("int64")

train_ds = modules.get_dataset(x, y)
val_ds = modules.get_dataset(x, y)
test_ds = modules.get_dataset(x, y)

train_loader = DataLoader(train_ds, batch_size=32)
val_loader = DataLoader(val_ds, batch_size=32)
test_loader = DataLoader(test_ds, batch_size=32)

runner = tasks.ClassificationRunner(
model, optimizer, nn.CrossEntropyLoss(), experiment
)

with runner:
for epoch in tqdm(range(10)):
with runner.experiment.train():
for train_batch in train_loader:
runner.optimizer.zero_grad()
train_out = runner.train_step(train_batch)
runner.backward(train_out["loss"])
runner.update_optimizer()

with runner.experiment.validate(), torch.no_grad():
for val_batch in val_loader:
val_out = runner.val_step(val_batch)["loss"]
runner.experiment.log_metric("val_loss", val_out)

with runner.experiment.test(), torch.no_grad():
for test_batch in test_loader:
test_out = runner.test_step(test_batch)["loss"]
runner.experiment.log_metric("test_loss", test_out)

# The latest checkpoints (model_state & optim_state) are stored
# in comet.ml after the with statement.
```

## Graph visualization

```python
import torch
from enchanter.utils import visualize
from enchanter.addons.layers import AutoEncoder

x = torch.randn(1, 32) # [N, in_features]
model = AutoEncoder([32, 16, 8, 2])
visualize.with_netron(model, (x, ))
```

![netron_graph](docs/tutorial/assets/netron_viewer.png)

## License
[Apache License 2.0](LICENSE)