Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kieferk/dfply

dplyr-style piping operations for pandas dataframes
https://github.com/kieferk/dfply

Last synced: 10 days ago
JSON representation

dplyr-style piping operations for pandas dataframes

Awesome Lists containing this project

README

        

# dfply

### Version: 0.3.2

> Note: Version 0.3.0 is the first big update in awhile, and changes a lot of
the "base" code. The `pandas-ply` package is no longer being imported. I have coded
my own version of the "symbolic" objects that I was borrowing from `pandas-ply`. Also,
I am no longer supporting Python 2, sorry!

> **In v0.3 `groupby` has been renamed to `group_by` to mirror the `dplyr` function.
If this breaks your legacy code, one possible fix is to have `from dfply.group import group_by as groupby`
in your package imports.**

The `dfply` package makes it possible to do R's `dplyr`-style data manipulation with pipes
in python on pandas DataFrames.

This is an alternative to [`pandas-ply`](https://github.com/coursera/pandas-ply)
and [`dplython`](https://github.com/dodger487/dplython), which both engineer `dplyr`
syntax and functionality in python. There are probably more packages that attempt
to enable `dplyr`-style dataframe manipulation in python, but those are the two I
am aware of.

`dfply` uses a decorator-based architecture for the piping functionality and
to "categorize" the types of data manipulation functions. The goal of this
architecture is to make `dfply` concise and easily extensible, simply by chaining
together different decorators that each have a distinct effect on the wrapped
function. There is a more in-depth overview of the decorators and how `dfply` can be
customized below.

`dfply` is intended to mimic the functionality of `dplyr`. The syntax
is the same for the most part, but will vary in some cases as Python is a
considerably different programming language than R.

A good amount of the core functionality of `dplyr` is complete, and the remainder is
actively being added in. Going forward I hope functionality that is not
directly part of `dplyr` to be incorporated into `dfply` as well. This is not
intended to be an absolute mimic of `dplyr`, but instead a port of the _ease,
convenience and readability_ the `dplyr` package provides for data manipulation
tasks.

**Expect frequent updates to the package version as features are added and
any bugs are fixed.**

- [Overview of functions](#overview-of-functions)
- [The `>>` and `>>=` pipe operators](#the--and--pipe-operators)
- [The `X` DataFrame symbol](#the-x-dataframe-symbol)
- [Selecting and dropping](#selecting-and-dropping)
- [`select()` and `drop()` functions](#select-and-drop-functions)
- [Selection using the inversion `~` operator on symbolic columns](#selection-using-the-inversion--operator-on-symbolic-columns)
- [Selection filter functions](#selection-filter-functions)
- [Subsetting and filtering](#subsetting-and-filtering)
- [`row_slice()`](#row_slice)
- [`sample()`](#sample)
- [`distinct()`](#distinct)
- [`mask()`](#mask)
- [DataFrame transformation](#dataframe-transformation)
- [`mutate()`](#mutate)
- [`transmute()`](#transmute)
- [Grouping](#grouping)
- [`group_by()` and `ungroup()`](#group_by-and-ungroup)
- [Reshaping](#reshaping)
- [`arrange()`](#arrange)
- [`rename()`](#rename)
- [`gather()`](#gather)
- [`spread()`](#spread)
- [`separate()`](#separate)
- [`unite()`](#unite)
- [Joining](#joining)
- [`inner_join()`](#inner_join)
- [`outer_join()` or `full_join()`](#outer_join-or-full_join)
- [`left_join()`](#left_join)
- [`right_join()`](#right_join)
- [`semi_join()`](#semi_join)
- [`anti_join()`](#anti_join)
- [Set operations](#set-operations)
- [`union()`](#union)
- [`intersect()`](#intersect)
- [`set_diff()`](#set_diff)
- [Binding](#binding)
- [`bind_rows()`](#bind_rows)
- [`bind_cols()`](#bind_cols)
- [Summarization](#summarization)
- [`summarize()`](#summarize)
- [`summarize_each()`](#summarize_each)
- [Embedded column functions](#embedded-column-functions)
- [Window functions](#window-functions)
- [`lead()` and `lag()`](#lead-and-lag)
- [`between()`](#between)
- [`dense_rank()`](#dense_rank)
- [`min_rank()`](#min_rank)
- [`cumsum()`](#cumsum)
- [`cummean()`](#cummean)
- [`cummax()`](#cummax)
- [`cummin()`](#cummin)
- [`cumprod()`](#cumprod)
- [Summary functions](#summary-functions)
- [`mean()`](#mean)
- [`first()`](#first)
- [`last()`](#last)
- [`nth()`](#nth)
- [`n()`](#n)
- [`n_distinct()`](#n_distinct)
- [`IQR()`](#iqr)
- [`colmin()`](#colmin)
- [`colmax()`](#colmax)
- [`median()`](#median)
- [`var()`](#var)
- [`sd()`](#sd)
- [Extending `dfply` with custom functions](#extending-dfply-with-custom-functions)
- [Case 1: A custom "pipe" function with `@dfpipe`](#case-1-a-custom-pipe-function-with-dfpipe)
- [Case 2: A function that works with symbolic objects using `@make_symbolic`](#case-2-a-function-that-works-with-symbolic-objects-using-make_symbolic)
- [Without symbolic arguments, `@make_symbolic` functions work like normal functions!](#without-symbolic-arguments-make_symbolic-functions-work-like-normal-functions)
- [Advanced: understanding base `dfply` decorators](#advanced-understanding-base-dfply-decorators)
- [The `Intention` class](#the-intention-class)
- [`@pipe`](#pipe)
- [`@group_delegation`](#group_delegation)
- [`@symbolic_evaluation`](#symbolic_evaluation)
- [Controlling `@symbolic_evaluation` with the `eval_symbols` argument](#controlling-symbolic_evaluation-with-the-eval_symbols-argument)
- [`@dfpipe`](#dfpipe)
- [`@make_symbolic`](#make_symbolic)
- [Contributing](#contributing)

## Overview of functions

### The `>>` and `>>=` pipe operators

dfply works directly on pandas DataFrames, chaining operations on the data with
the `>>` operator, or alternatively starting with `>>=` for inplace operations.

```python
from dfply import *

diamonds >> head(3)

carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
```

You can chain piped operations, and of course assign the output to a new
DataFrame.

```python
lowprice = diamonds >> head(10) >> tail(3)

lowprice

carat cut color clarity depth table price x y z
7 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53
8 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49
9 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39
```

Inplace operations are done with the first pipe as `>>=` and subsequent pipes
as `>>`.

```python
diamonds >>= head(10) >> tail(3)

diamonds

carat cut color clarity depth table price x y z
7 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53
8 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49
9 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39
```

When using the inplace pipe, the DataFrame is not required on the left hand
side of the `>>=` pipe and the DataFrame variable is overwritten with the
output of the operations.

### The `X` DataFrame symbol

The DataFrame as it is passed through the piping operations is represented
by the symbol `X`. It records the actions you want to take (represented by
the `Intention` class), but does not evaluate them until the appropriate time.
Operations on the DataFrame are deferred. Selecting
two of the columns, for example, can be done using the symbolic `X` DataFrame
during the piping operations.

```python
diamonds >> select(X.carat, X.cut) >> head(3)

carat cut
0 0.23 Ideal
1 0.21 Premium
2 0.23 Good
```

### Selecting and dropping

#### `select()` and `drop()` functions

There are two functions for selection, inverse of each other: `select` and
`drop`. The `select` and `drop` functions accept string labels, integer positions,
and/or symbolically represented column names (`X.column`). They also accept symbolic "selection
filter" functions, which will be covered shortly.

The example below selects "cut", "price", "x", and "y" from the diamonds dataset.

```python
diamonds >> select(1, X.price, ['x', 'y']) >> head(2)

cut price x y
0 Ideal 326 3.95 3.98
1 Premium 326 3.89 3.84
```

If you were instead to use `drop`, you would get back all columns besides those specified.

```python
diamonds >> drop(1, X.price, ['x', 'y']) >> head(2)

carat color clarity depth table z
0 0.23 E SI2 61.5 55.0 2.43
1 0.21 E SI1 59.8 61.0 2.31
```

#### Selection using the inversion `~` operator on symbolic columns

One particularly nice thing about `dplyr`'s selection functions is that you can
drop columns inside of a select statement by putting a subtraction sign in front,
like so: `... %>% select(-col)`. The same can be done in `dfply`, but instead of
the subtraction operator you use the tilde `~`.

For example, let's say I wanted to select any column _except_ carat, color, and
clarity in my dataframe. One way to do this is to specify those for removal using
the `~` operator like so:

```python
diamonds >> select(~X.carat, ~X.color, ~X.clarity) >> head(2)

cut depth table price x y z
0 Ideal 61.5 55.0 326 3.95 3.98 2.43
1 Premium 59.8 61.0 326 3.89 3.84 2.31
```

Note that if you are going to use the inversion operator, you _must_ place it
prior to the symbolic `X` (or a symbolic such as a selection filter function, covered
next). For example, using the inversion operator on a list of columns will
result in an error:

```python
diamonds >> select(~[X.carat, X.color, X.clarity]) >> head(2)

TypeError: bad operand type for unary ~: 'list'
```

#### Selection filter functions

The vanilla `select` and `drop` functions are useful, but there are a variety of
selection functions inspired by `dplyr` available to make selecting and dropping
columns a breeze. These functions are intended to be put inside of the `select` and
`drop` functions, and can be paired with the `~` inverter.

First, a quick rundown of the available functions:
- `starts_with(prefix)`: find columns that start with a string prefix.
- `ends_with(suffix)`: find columns that end with a string suffix.
- `contains(substr)`: find columns that contain a substring in their name.
- `everything()`: all columns.
- `columns_between(start_col, end_col, inclusive=True)`: find columns between a specified start and end column.
The `inclusive` boolean keyword argument indicates whether the end column should be included or not.
- `columns_to(end_col, inclusive=True)`: get columns up to a specified end column. The `inclusive`
argument indicates whether the ending column should be included or not.
- `columns_from(start_col)`: get the columns starting at a specified column.

The selection filter functions are best explained by example. Let's say I wanted to
select only the columns that started with a "c":

```python
diamonds >> select(starts_with('c')) >> head(2)

carat cut color clarity
0 0.23 Ideal E SI2
1 0.21 Premium E SI1
```

The selection filter functions are instances of the class `Intention`, just like the
`X` placeholder, and so I can also use the inversion operator with them. For example,
I can alternatively select the columns that do not start with "c":

```python
diamonds >> select(~starts_with('c')) >> head(2)

depth table price x y z
0 61.5 55.0 326 3.95 3.98 2.43
1 59.8 61.0 326 3.89 3.84 2.31
```

They work the same inside the `drop` function, but with the intention of removal.
I could, for example, use the `columns_from` selection filter to drop all columns
from "price" onwards:

```python
diamonds >> drop(columns_from(X.price)) >> head(2)

carat cut color clarity depth table
0 0.23 Ideal E SI2 61.5 55.0
1 0.21 Premium E SI1 59.8 61.0
```

As the example above shows, you can use symbolic column names inside of the
selection filter function! You can also mix together selection filters and standard
selections inside of the same `select` or `drop` command.

For my next trick, I will select the first two columns, the last two columns, and
the "depth" column using a mixture of selection techniques:

```python
diamonds >> select(columns_to(1, inclusive=True), 'depth', columns_from(-2)) >> head(2)

carat cut depth y z
0 0.23 Ideal 61.5 3.98 2.43
1 0.21 Premium 59.8 3.84 2.31
```

### Subsetting and filtering

#### `row_slice()`

Slices of rows can be selected with the `row_slice()` function. You can pass
single integer indices or a list of indices to select rows as with. This is
going to be the same as using pandas' `.iloc`.

```python
diamonds >> row_slice([10,15])

carat cut color clarity depth table price x y z
10 0.30 Good J SI1 64.0 55.0 339 4.25 4.28 2.73
15 0.32 Premium E I1 60.9 58.0 345 4.38 4.42 2.68
```

Note that this can also be used with the `group_by` function, and will operate
like a call to `.iloc` on each group. The `group_by` pipe function is
covered later, but it essentially works the same as pandas `.groupby` (with a
few subtle differences).

```python
diamonds >> group_by('cut') >> row_slice(5)

carat cut color clarity depth table price x y z
128 0.91 Fair H SI2 64.4 57.0 2763 6.11 6.09 3.93
20 0.30 Good I SI2 63.3 56.0 351 4.26 4.30 2.71
40 0.33 Ideal I SI2 61.2 56.0 403 4.49 4.50 2.75
26 0.24 Premium I VS1 62.5 57.0 355 3.97 3.94 2.47
21 0.23 Very Good E VS2 63.8 55.0 352 3.85 3.92 2.48
```

#### `sample()`

The `sample()` function functions exactly the same as pandas' `.sample()` method
for DataFrames. Arguments and keyword arguments will be passed through to the
DataFrame sample method.

```python
diamonds >> sample(frac=0.0001, replace=False)

carat cut color clarity depth table price x y z
19736 1.02 Ideal E VS1 62.2 54.0 8303 6.43 6.46 4.01
37159 0.32 Premium D VS2 60.3 60.0 972 4.44 4.42 2.67
1699 0.72 Very Good E VS2 63.8 57.0 3035 5.66 5.69 3.62
20955 1.71 Very Good J VS2 62.6 55.0 9170 7.58 7.65 4.77
5168 0.91 Very Good E SI2 63.0 56.0 3772 6.12 6.16 3.87

diamonds >> sample(n=3, replace=True)

carat cut color clarity depth table price x y z
52892 0.73 Very Good G SI1 60.6 59.0 2585 5.83 5.85 3.54
39454 0.57 Ideal H SI2 62.3 56.0 1077 5.31 5.28 3.30
39751 0.43 Ideal H VVS1 62.3 54.0 1094 4.84 4.85 3.02
```

#### `distinct()`

Selection of unique rows is done with `distinct()`, which similarly passes
arguments and keyword arguments through to the DataFrame's `.drop_duplicates()`
method.

```python
diamonds >> distinct(X.color)

carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
7 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53
12 0.22 Premium F SI1 60.4 61.0 342 3.88 3.84 2.33
25 0.23 Very Good G VVS2 60.4 58.0 354 3.97 4.01 2.41
28 0.23 Very Good D VS2 60.5 61.0 357 3.96 3.97 2.40
```

#### `mask()`

Filtering rows with logical criteria is done with `mask()`, which accepts
boolean arrays "masking out" False labeled rows and keeping True labeled rows.
These are best created with logical statements on symbolic Series objects as
shown below. Multiple criteria can be supplied as arguments and their intersection
will be used as the mask.

```python
diamonds >> mask(X.cut == 'Ideal') >> head(4)

carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
11 0.23 Ideal J VS1 62.8 56.0 340 3.93 3.90 2.46
13 0.31 Ideal J SI2 62.2 54.0 344 4.35 4.37 2.71
16 0.30 Ideal I SI2 62.0 54.0 348 4.31 4.34 2.68

diamonds >> mask(X.cut == 'Ideal', X.color == 'E', X.table < 55, X.price < 500)

carat cut color clarity depth table price x y z
26683 0.33 Ideal E SI2 62.2 54.0 427 4.44 4.46 2.77
32297 0.34 Ideal E SI2 62.4 54.0 454 4.49 4.52 2.81
40928 0.30 Ideal E SI1 61.6 54.0 499 4.32 4.35 2.67
50623 0.30 Ideal E SI2 62.1 54.0 401 4.32 4.35 2.69
50625 0.30 Ideal E SI2 62.0 54.0 401 4.33 4.35 2.69
```

Alternatively, `mask()` can also be called using the alias `filter_by()`:

```python
diamonds >> filter_by(X.cut == 'Ideal', X.color == 'E', X.table < 55, X.price < 500)

carat cut color clarity depth table price x y z
26683 0.33 Ideal E SI2 62.2 54.0 427 4.44 4.46 2.77
32297 0.34 Ideal E SI2 62.4 54.0 454 4.49 4.52 2.81
40928 0.30 Ideal E SI1 61.6 54.0 499 4.32 4.35 2.67
50623 0.30 Ideal E SI2 62.1 54.0 401 4.32 4.35 2.69
50625 0.30 Ideal E SI2 62.0 54.0 401 4.33 4.35 2.69
```

#### `pull()`

`pull` simply retrieves a column and returns it as a pandas series, in case you only care about one particular column at the end of your pipeline. Columns can be specified either by their name (string) or an integer.

The default returns the last column (on the assumption that's the column you've created most recently).

Example:

```python
(diamonds
>> filter_by(X.cut == 'Ideal', X.color == 'E', X.table < 55, X.price < 500)
>> pull('carat'))

26683 0.33
32297 0.34
40928 0.30
50623 0.30
50625 0.30
Name: carat, dtype: float64
```

### DataFrame transformation

#### `mutate()`

New variables can be created with the `mutate()` function (named that way to match
`dplyr`).

```python
diamonds >> mutate(x_plus_y=X.x + X.y) >> select(columns_from('x')) >> head(3)

x y z x_plus_y
0 3.95 3.98 2.43 7.93
1 3.89 3.84 2.31 7.73
2 4.05 4.07 2.31 8.12
```

Multiple variables can be created in a single call.

```python
diamonds >> mutate(x_plus_y=X.x + X.y, y_div_z=(X.y / X.z)) >> select(columns_from('x')) >> head(3)

x y z x_plus_y y_div_z
0 3.95 3.98 2.43 7.93 1.637860
1 3.89 3.84 2.31 7.73 1.662338
2 4.05 4.07 2.31 8.12 1.761905
```

> Note: In Python the new variables created with mutate may not be guaranteed
to be created in the same order that they are input into the function call, though
this may have been changed in Python 3...

#### `transmute()`

The `transmute()` function is a combination of a mutate and a selection of the
created variables.

```python
diamonds >> transmute(x_plus_y=X.x + X.y, y_div_z=(X.y / X.z)) >> head(3)

x_plus_y y_div_z
0 7.93 1.637860
1 7.73 1.662338
2 8.12 1.761905
```

### Grouping

#### `group_by()` and `ungroup()`

DataFrames are grouped along variables using the `group_by()` function and
ungrouped with the `ungroup()` function. Functions chained after grouping a
DataFrame are applied by group until returning or ungrouping. Hierarchical/multiindexing
is automatically removed.

> Note: In the example below, the `lead()` and `lag()` functions are dfply convenience
wrappers around the pandas `.shift()` Series method.

```python
(diamonds >> group_by(X.cut) >>
mutate(price_lead=lead(X.price), price_lag=lag(X.price)) >>
head(2) >> select(X.cut, X.price, X.price_lead, X.price_lag))

cut price price_lead price_lag
8 Fair 337 2757.0 NaN
91 Fair 2757 2759.0 337.0
2 Good 327 335.0 NaN
4 Good 335 339.0 327.0
0 Ideal 326 340.0 NaN
11 Ideal 340 344.0 326.0
1 Premium 326 334.0 NaN
3 Premium 334 342.0 326.0
5 Very Good 336 336.0 NaN
6 Very Good 336 337.0 336.0
```

### Reshaping

#### `arrange()`

Sorting is done by the `arrange()` function, which wraps around the pandas
`.sort_values()` DataFrame method. Arguments and keyword arguments are passed
through to that function.

```python
diamonds >> arrange(X.table, ascending=False) >> head(5)

carat cut color clarity depth table price x y z
24932 2.01 Fair F SI1 58.6 95.0 13387 8.32 8.31 4.87
50773 0.81 Fair F SI2 68.8 79.0 2301 5.26 5.20 3.58
51342 0.79 Fair G SI1 65.3 76.0 2362 5.52 5.13 3.35
52860 0.50 Fair E VS2 79.0 73.0 2579 5.21 5.18 4.09
49375 0.70 Fair H VS1 62.0 73.0 2100 5.65 5.54 3.47

(diamonds >> group_by(X.cut) >> arrange(X.price) >>
head(3) >> ungroup() >> mask(X.carat < 0.23))

carat cut color clarity depth table price x y z
8 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
12 0.22 Premium F SI1 60.4 61.0 342 3.88 3.84 2.33
```

#### `rename()`

The `rename()` function will rename columns provided as values to what you set
as the keys in the keyword arguments. You can indicate columns with symbols or
with their labels.

```python
diamonds >> rename(CUT=X.cut, COLOR='color') >> head(2)

carat CUT COLOR clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
```

#### `gather()`

Transforming between "wide" and "long" format is a common pattern in data munging.
The `gather(key, value, *columns)` function melts the specified columns in your
DataFrame into two key:value columns.

```python
diamonds >> gather('variable', 'value', ['price', 'depth','x','y','z']) >> head(5)

carat cut color clarity table variable value
0 0.23 Ideal E SI2 55.0 price 326.0
1 0.21 Premium E SI1 61.0 price 326.0
2 0.23 Good E VS1 65.0 price 327.0
3 0.29 Premium I VS2 58.0 price 334.0
4 0.31 Good J SI2 58.0 price 335.0
```

Without any columns specified, your entire DataFrame will be transformed into
two key:value pair columns.

```python
diamonds >> gather('variable', 'value') >> head(5)

variable value
0 carat 0.23
1 carat 0.21
2 carat 0.23
3 carat 0.29
4 carat 0.31
```

If the `add_id` keyword argument is set to true, an id column is added to the
new elongated DataFrame that acts as a row id from the original wide DataFrame.

```python
elongated = diamonds >> gather('variable', 'value', add_id=True)
elongated >> head(5)

_ID variable value
0 0 carat 0.23
1 1 carat 0.21
2 2 carat 0.23
3 3 carat 0.29
4 4 carat 0.31
```

#### `spread()`

Likewise, you can transform a "long" DataFrame into a "wide" format with the
`spread(key, values)` function. Converting the previously created elongated
DataFrame for example would be done like so.

```python
widened = elongated >> spread(X.variable, X.value)
widened >> head(5)

_ID carat clarity color cut depth price table x y z
0 0 0.23 SI2 E Ideal 61.5 326 55 3.95 3.98 2.43
1 1 0.21 SI1 E Premium 59.8 326 61 3.89 3.84 2.31
2 10 0.3 SI1 J Good 64 339 55 4.25 4.28 2.73
3 100 0.75 SI1 D Very Good 63.2 2760 56 5.8 5.75 3.65
4 1000 0.75 SI1 D Ideal 62.3 2898 55 5.83 5.8 3.62
```

In this case the `_ID` column comes in handy since it is necessary to not have
any duplicated identifiers.

If you have a mixed datatype column in your long-format DataFrame then the
default behavior is for the spread columns to be of type object.

```python
widened.dtypes

_ID int64
carat object
clarity object
color object
cut object
depth object
price object
table object
x object
y object
z object
dtype: object
```

If you want to try to convert dtypes when spreading, you can set the `convert`
keyword argument in spread to True like so.

```python
widened = elongated >> spread(X.variable, X.value, convert=True)
widened.dtypes

_ID int64
carat float64
clarity object
color object
cut object
depth float64
price int64
table float64
x float64
y float64
z float64
dtype: object
```

#### `separate()`

Columns can be split into multiple columns with the
`separate(column, into, sep="[\W_]+", remove=True, convert=False,
extra='drop', fill='right')` function. `separate()` takes a variety of arguments:

- `column`: the column to split.
- `into`: the names of the new columns.
- `sep`: either a regex string or integer positions to split the column on.
- `remove`: boolean indicating whether to remove the original column.
- `convert`: boolean indicating whether the new columns should be converted to
the appropriate type (same as in `spread` above).
- `extra`: either `drop`, where split pieces beyond the specified new columns
are dropped, or `merge`, where the final split piece contains the remainder of
the original column.
- `fill`: either `right`, where `np.nan` values are filled in the right-most
columns for missing pieces, or `left` where `np.nan` values are filled in the
left-most columns.

```python
print d

a
0 1-a-3
1 1-b
2 1-c-3-4
3 9-d-1
4 10

d >> separate(X.a, ['col1', 'col2'], remove=True, convert=True,
extra='drop', fill='right')

col1 col2
0 1 a
1 1 b
2 1 c
3 9 d
4 10 NaN

d >> separate(X.a, ['col1', 'col2'], remove=True, convert=True,
extra='drop', fill='left')

col1 col2
0 1.0 a
1 1.0 b
2 1.0 c
3 9.0 d
4 NaN 10

d >> separate(X.a, ['col1', 'col2'], remove=False, convert=True,
extra='merge', fill='right')

a col1 col2
0 1-a-3 1 a-3
1 1-b 1 b
2 1-c-3-4 1 c-3-4
3 9-d-1 9 d-1
4 10 10 NaN

d >> separate(X.a, ['col1', 'col2', 'col3'], sep=[2,4], remove=True, convert=True,
extra='merge', fill='right')

col1 col2 col3
0 1- a- 3
1 1- b NaN
2 1- c- 3-4
3 9- d- 1
4 10 NaN NaN
```

#### `unite()`

The `unite(colname, *args, sep='_', remove=True, na_action='maintain')` function
does the inverse of `separate()`, joining columns together by a separator. Any
columns that are not strings will be converted to strings. The arguments for
`unite()` are:

- `colname`: the name of the new joined column.
- `*args`: list of columns to be joined, which can be strings, symbolic, or
integer positions.
- `sep`: the string separator to join the columns with.
- `remove`: boolean indicating whether or not to remove the original columns.
- `na_action`: can be one of `"maintain"` (the default), `"ignore"`, or
`"as_string"`. The default `"maintain"` will make the new column row a `NaN` value
if any of the original column cells at that row contained `NaN`. `"ignore"` will
treat any `NaN` value as an empty string during joining. `"as_string"` will convert
any `NaN` value to the string `"nan"` prior to joining.

```python

print d

a b c
0 1 a True
1 2 b False
2 3 c NaN

d >> unite('united', X.a, 'b', 2, remove=False, na_action='maintain')

a b c united
0 1 a True 1_a_True
1 2 b False 2_b_False
2 3 c NaN NaN

d >> unite('united', ['a','b','c'], remove=True, na_action='ignore', sep='*')

united
0 1*a*True
1 2*b*False
2 3*c

d >> unite('united', d.columns, remove=True, na_action='as_string')

united
0 1_a_True
1 2_b_False
2 3_c_nan
```

### Joining

Currently implemented joins are:

1. `inner_join(other, by='column')`
- `outer_join(other, by='column')` (which works the same as `full_join()`)
- `right_join(other, by='column')`
- `left_join(other, by='column')`
- `semi_join(other, by='column')`
- `anti_join(other, by='column')`

The functionality of the join functions are outlined with the toy example
DataFrames below.

```python
a = pd.DataFrame({
'x1':['A','B','C'],
'x2':[1,2,3]
})
b = pd.DataFrame({
'x1':['A','B','D'],
'x3':[True,False,True]
})
```

#### `inner_join()`

`inner_join()` joins on values present in both DataFrames' `by` columns.

```python
a >> inner_join(b, by='x1')

x1 x2 x3
0 A 1 True
1 B 2 False
```

#### `outer_join()` or `full_join()`

`outer_join` merges DataFrame's together on values present in either frame's
`by` columns.

```python
a >> outer_join(b, by='x1')

x1 x2 x3
0 A 1.0 True
1 B 2.0 False
2 C 3.0 NaN
3 D NaN True
```

#### `left_join()`

`left_join` merges on the values present in the left DataFrame's `by` columns.

```python
a >> left_join(b, by='x1')

x1 x2 x3
0 A 1 True
1 B 2 False
2 C 3 NaN
```

#### `right_join()`

`right_join` merges on the values present in the right DataFrame's `by` columns.

```python
a >> right_join(b, by='x1')

x1 x2 x3
0 A 1.0 True
1 B 2.0 False
2 D NaN True
```

#### `semi_join()`

`semi_join()` returns all of the rows in the left DataFrame that have a match
in the right DataFrame in the `by` columns.

```python
a >> semi_join(b, by='x1')

x1 x2
0 A 1
1 B 2
```

#### `anti_join()`

`anti_join()` returns all of the rows in the left DataFrame that do not have a
match in the right DataFrame within the `by` columns.

```python
a >> anti_join(b, by='x1')

x1 x2
2 C 3
```

### Set operations

The set operation functions filter a DataFrame based on row comparisons with
another DataFrame.

Each of the set operation functions `union()`, `intersect()`, and `set_diff()`
take the same arguments:

- `other`: the DataFrame to compare to
- `index`: a boolean (default `False`) indicating whether to consider the pandas
index during comparison.
- `keep`: string (default `"first"`) to be passed through to `.drop_duplicates()`
controlling how to handle duplicate rows.

With set operations columns are expected to be in the same order in both
DataFrames.

The function examples use the following two toy DataFrames.

```python
a = pd.DataFrame({
'x1':['A','B','C'],
'x2':[1,2,3]
})
c = pd.DataFrame({
'x1':['B','C','D'],
'x2':[2,3,4]
})
```

#### `union()`

The `union()` function returns rows that appear in either DataFrame.

```python
a >> union(c)

x1 x2
0 A 1
1 B 2
2 C 3
2 D 4
```

#### `intersect()`

`intersect()` returns rows that appear in both DataFrames.

```python
a >> intersect(c)

x1 x2
0 B 2
1 C 3
```

#### `set_diff()`

`set_diff()` returns the rows in the left DataFrame that do not appear in the
right DataFrame.

```python
a >> set_diff(c)

x1 x2
0 A 1
```

### Binding

`dfply` comes with convenience wrappers around `pandas.concat()` for joining
DataFrames by rows or by columns.

The toy DataFrames below (`a` and `b`) are the same as the ones used to display
the join functions above.

#### `bind_rows()`

The `bind_rows(other, join='outer', ignore_index=False)` function is an exact
call to `pandas.concat([df, other], join=join, ignore_index=ignore_index, axis=0)`,
joining two DataFrames "vertically".

```python
a >> bind_rows(b, join='inner')

x1
0 A
1 B
2 C
0 A
1 B
2 D

a >> bind_rows(b, join='outer')

x1 x2 x3
0 A 1.0 NaN
1 B 2.0 NaN
2 C 3.0 NaN
0 A NaN True
1 B NaN False
2 D NaN True
```

Note that `bind_rows()` does not reset the index for you!

#### `bind_cols()`

The `bind_cols(other, join='outer', ignore_index=False)` is likewise just a
call to `pandas.concat([df, other], join=join, ignore_index=ignore_index, axis=1)`,
joining DataFrames "horizontally".

```python
a >> bind_cols(b)

x1 x2 x1 x3
0 A 1 A True
1 B 2 B False
2 C 3 D True
```

Note that you may well end up with duplicate column labels after binding columns
as can be seen above.

### Summarization

There are two summarization functions in `dfply` that match `dplr`: `summarize` and
`summarize_each` (though these functions use the 'z' spelling rather than 's').

#### `summarize()`

`summarize(**kwargs)` takes an arbitrary number of keyword arguments that will
return new columns labeled with the keys that are summary functions of columns
in the original DataFrame.

```python
diamonds >> summarize(price_mean=X.price.mean(), price_std=X.price.std())

price_mean price_std
0 3932.799722 3989.439738
```

`summarize()` can of course be used with groupings as well.

```python
diamonds >> group_by('cut') >> summarize(price_mean=X.price.mean(), price_std=X.price.std())

cut price_mean price_std
0 Fair 4358.757764 3560.386612
1 Good 3928.864452 3681.589584
2 Ideal 3457.541970 3808.401172
3 Premium 4584.257704 4349.204961
4 Very Good 3981.759891 3935.862161
```

#### `summarize_each()`

The `summarize_each(function_list, *columns)` is a more general summarization
function. It takes a list of summary functions to apply as its first argument and
then a list of columns to apply the summary functions to. Columns can be specified
with either symbolic, string label, or integer position like in the selection
functions for convenience.

```python
diamonds >> summarize_each([np.mean, np.var], X.price, 'depth')

price_mean price_var depth_mean depth_var
0 3932.799722 1.591533e+07 61.749405 2.052366
```

`summarize_each()` works with groupings as well.

```python
diamonds >> group_by(X.cut) >> summarize_each([np.mean, np.var], X.price, 4)

cut price_mean price_var depth_mean depth_var
0 Fair 4358.757764 1.266848e+07 64.041677 13.266319
1 Good 3928.864452 1.355134e+07 62.365879 4.705224
2 Ideal 3457.541970 1.450325e+07 61.709401 0.516274
3 Premium 4584.257704 1.891421e+07 61.264673 1.342755
4 Very Good 3981.759891 1.548973e+07 61.818275 1.900466
```

## Embedded column functions

**UNDER CONSTRUCTION: documentation not complete.**

Like `dplyr`, the `dfply` package provides functions to perform various operations
on pandas Series. These are typically window functions and summarization
functions, and wrap symbolic arguments in function calls.

### Window functions

Window functions perform operations on vectors of values that return a vector
of the same length.

#### `lead()` and `lag()`

The `lead(series, n)` function pushes values in a vector upward, adding `NaN`
values in the end positions. Likewise, the `lag(series, n)` function
pushes values downward, inserting `NaN` values in the initial positions. Both
are calls to pandas `Series.shift()` function under the hood.

```python
(diamonds >> mutate(price_lead=lead(X.price, 2), price_lag=lag(X.price, 2)) >>
select(X.price, -2, -1) >>
head(6))

price price_lag price_lead
0 326 NaN 327.0
1 326 NaN 334.0
2 327 326.0 335.0
3 334 326.0 336.0
4 335 327.0 336.0
5 336 334.0 337.0
```

#### `between()`

The `between(series, a, b, inclusive=False)` function checks to see if values are
between two given bookend values.

```python
diamonds >> select(X.price) >> mutate(price_btwn=between(X.price, 330, 340)) >> head(6)

price price_btwn
0 326 False
1 326 False
2 327 False
3 334 True
4 335 True
5 336 True
```

#### `dense_rank()`

The `dense_rank(series, ascending=True)` function is a wrapper around the `scipy`
function for calculating dense rank.

```python
diamonds >> select(X.price) >> mutate(price_drank=dense_rank(X.price)) >> head(6)

price price_drank
0 326 1.0
1 326 1.0
2 327 2.0
3 334 3.0
4 335 4.0
5 336 5.0
```

#### `min_rank()`

Likewise, `min_rank(series, ascending=True)` is a wrapper around the `scipy` ranking
function with min rank specified.

```python
diamonds >> select(X.price) >> mutate(price_mrank=min_rank(X.price)) >> head(6)

price price_mrank
0 326 1.0
1 326 1.0
2 327 3.0
3 334 4.0
4 335 5.0
5 336 6.0
```

#### `cumsum()`

The `cumsum(series)` function calculates a cumulative sum of a column.

```python
diamonds >> select(X.price) >> mutate(price_cumsum=cumsum(X.price)) >> head(6)

price price_cumsum
0 326 326
1 326 652
2 327 979
3 334 1313
4 335 1648
5 336 1984
```

#### `cummean()`

`cummean(series)`

```python
diamonds >> select(X.price) >> mutate(price_cummean=cummean(X.price)) >> head(6)

price price_cummean
0 326 326.000000
1 326 326.000000
2 327 326.333333
3 334 328.250000
4 335 329.600000
5 336 330.666667
```

#### `cummax()`

`cummax(series)`

```python
diamonds >> select(X.price) >> mutate(price_cummax=cummax(X.price)) >> head(6)

price price_cummax
0 326 326.0
1 326 326.0
2 327 327.0
3 334 334.0
4 335 335.0
5 336 336.0
```

#### `cummin()`

`cummin(series)`

```python
diamonds >> select(X.price) >> mutate(price_cummin=cummin(X.price)) >> head(6)

price price_cummin
0 326 326.0
1 326 326.0
2 327 326.0
3 334 326.0
4 335 326.0
5 336 326.0
```

#### `cumprod()`

`cumprod(series)`

```python
diamonds >> select(X.price) >> mutate(price_cumprod=cumprod(X.price)) >> head(6)

price price_cumprod
0 326 326
1 326 106276
2 327 34752252
3 334 11607252168
4 335 3888429476280
5 336 1306512304030080
```

### Summary functions

#### `mean()`

`mean(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_mean=mean(X.price))

cut price_mean
0 Fair 4358.757764
1 Good 3928.864452
2 Ideal 3457.541970
3 Premium 4584.257704
4 Very Good 3981.759891
```

#### `first()`

`first(series, order_by=None)`

```python
diamonds >> groupby(X.cut) >> summarize(price_first=first(X.price))

cut price_first
0 Fair 337
1 Good 327
2 Ideal 326
3 Premium 326
4 Very Good 336
```

#### `last()`

`last(series, order_by=None)`

```python
diamonds >> groupby(X.cut) >> summarize(price_last=last(X.price))

cut price_last
0 Fair 2747
1 Good 2757
2 Ideal 2757
3 Premium 2757
4 Very Good 2757
```

#### `nth()`

`nth(series, n, order_by=None)`

```python
diamonds >> groupby(X.cut) >> summarize(price_penultimate=nth(X.price, -2))

cut price_penultimate
0 Fair 2745
1 Good 2756
2 Ideal 2757
3 Premium 2757
4 Very Good 2757
```

#### `n()`

`n(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_n=n(X.price))

cut price_n
0 Fair 1610
1 Good 4906
2 Ideal 21551
3 Premium 13791
4 Very Good 12082
```

#### `n_distinct()`

`n_distinct(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_ndistinct=n_distinct(X.price))

cut price_ndistinct
0 Fair 1267
1 Good 3086
2 Ideal 7281
3 Premium 6014
4 Very Good 5840
```

#### `IQR()`

`IQR(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_iqr=IQR(X.price))

cut price_iqr
0 Fair 3155.25
1 Good 3883.00
2 Ideal 3800.50
3 Premium 5250.00
4 Very Good 4460.75
```

#### `colmin()`

`colmin(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_min=colmin(X.price))

cut price_min
0 Fair 337
1 Good 327
2 Ideal 326
3 Premium 326
4 Very Good 336
```

#### `colmax()`

`colmax(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_max=colmax(X.price))

cut price_max
0 Fair 18574
1 Good 18788
2 Ideal 18806
3 Premium 18823
4 Very Good 18818
```

#### `median()`

`median(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_median=median(X.price))

cut price_median
0 Fair 3282.0
1 Good 3050.5
2 Ideal 1810.0
3 Premium 3185.0
4 Very Good 2648.0
```

#### `var()`

`var(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_var=var(X.price))

cut price_var
0 Fair 1.267635e+07
1 Good 1.355410e+07
2 Ideal 1.450392e+07
3 Premium 1.891558e+07
4 Very Good 1.549101e+07
```

#### `sd()`

`sd(series)`

```python
diamonds >> groupby(X.cut) >> summarize(price_sd=sd(X.price))

cut price_sd
0 Fair 3560.386612
1 Good 3681.589584
2 Ideal 3808.401172
3 Premium 4349.204961
4 Very Good 3935.862161
```

## Extending `dfply` with custom functions

There are a lot of built-in functions, but you are almost certainly going to
reach a point where you want to use some of your own functions with the `dfply`
piping syntax. Luckily, `dfply` comes with two handy decorators to make this
as easy as possible.

> **For a more detailed walkthrough of these two cases, see the [
basics-extending-functionality.ipynb](./examples/basics-extending-functionality.ipynb)
jupyter notebook in the examples folder.**

### Case 1: A custom "pipe" function with `@dfpipe`

You might want to make a custom function that can be a piece of the pipe chain.
For example, say we wanted to write a `dfply` wrapper around a simplified
version of `pd.crosstab`. For the most part, you'll only need to do two things
to make this work:
1. Make sure that your function's first argument will be the dataframe passed in
implicitly by the pipe.
2. Decorate the function with the `@dfpipe` decorator.

Here is an example of the `dfply`-enabled crosstab function:

```python
@dfpipe
def crosstab(df, index, columns):
return pd.crosstab(index, columns)
```

Normally you could use `pd.crosstab` like so:

```python
pd.crosstab(diamonds.cut, diamonds.color)

color D E F G H I J
cut
Fair 163 224 312 314 303 175 119
Good 662 933 909 871 702 522 307
Ideal 2834 3903 3826 4884 3115 2093 896
Premium 1603 2337 2331 2924 2360 1428 808
Very Good 1513 2400 2164 2299 1824 1204 678
```

The same result can be achieved now with the custom function in pipe syntax:

```python
diamonds >> crosstab(X.cut, X.color)

color D E F G H I J
cut
Fair 163 224 312 314 303 175 119
Good 662 933 909 871 702 522 307
Ideal 2834 3903 3826 4884 3115 2093 896
Premium 1603 2337 2331 2924 2360 1428 808
Very Good 1513 2400 2164 2299 1824 1204 678
```

### Case 2: A function that works with symbolic objects using `@make_symbolic`

Many tasks are simpler and do not require the capacity to work as a pipe function. The dfply window functions are the common examples of this: functions that take a Series (or symbolic Series) and return a modified version.

Let's say we had a dataframe with dates represented by strings that we wanted to convert to pandas datetime objects using the pd.to_datetime function. Below is a tiny example dataframe with this issue.

```python
sales = pd.DataFrame(dict(date=['7/10/17','7/11/17','7/12/17','7/13/17','7/14/17'],
sales=[1220, 1592, 908, 1102, 1395]))

sales

date sales
0 7/10/17 1220
1 7/11/17 1592
2 7/12/17 908
3 7/13/17 1102
4 7/14/17 1395
```

Using the `pd.to_datetime` function inside of a call to mutate will unfortunately
break:

```python
sales >> mutate(pd_date=pd.to_datetime(X.date, infer_datetime_format=True))

...

TypeError: __index__ returned non-int (type Intention)
```

`dfply` functions are special in that they "know" to delay their evaluation until
the data is at that point in the chain. `pd.to_datetime` is not such a function,
and will immediately try to evaluate `X.date`. With a symbolic `Intention` argument
passed in (`X` is an `Intention` object), the function will fail.

Instead, we will need to make a wrapper around `pd.to_datetime`
that can handle these symbolic arguments and delay evaluation until the right time.

It's quite simple: all you need to do is decorate a function with the @make_symbolic decorator:

```python
@make_symbolic
def to_datetime(series, infer_datetime_format=True):
return pd.to_datetime(series, infer_datetime_format=infer_datetime_format)
```

Now the function can be used with symbolic arguments:

```python
sales >> mutate(pd_date=to_datetime(X.date))

date sales pd_date
0 7/10/17 1220 2017-07-10
1 7/11/17 1592 2017-07-11
2 7/12/17 908 2017-07-12
3 7/13/17 1102 2017-07-13
4 7/14/17 1395 2017-07-14
```

#### Without symbolic arguments, `@make_symbolic` functions work like normal functions!

A particularly nice thing about functions decorated with `@make_symbolic` is that
they will operate normally if passed arguments that are not `Intention` symbolic
objects.

For example, you can pass in the series itself and it will return the new
series of converted dates:

```python
to_datetime(sales.date)

0 2017-07-10
1 2017-07-11
2 2017-07-12
3 2017-07-13
4 2017-07-14
Name: date, dtype: datetime64[ns]
```

## Advanced: understanding base `dfply` decorators

Under the hood, `dfply` functions work using a collection of different decorators and
special classes. Below the most important ones are detailed. Understanding these
are important if you are planning on making big additions or changes to the code.

### The `Intention` class

Python is not a lazily-evaluated language. Typically, something like this
would not work:

```python
diamonds >> select(X.carat) >> head(2)
```

The `X` is supposed to represent the current state of the data through the
piping operator chain, and `X.carat` indicates "select the carat column from
the current data at this point in the chain". But Python will try to evaluate
what `X` is, then what `X.carat` is, then what `select(X.carat)` is, all before
the diamonds dataset ever gets evaluated.

The solution to this is to delay the evaluation until the appropriate time. I will
not get into the granular details here (but feel free to check it out for yourself
in `base.py`). The gist is that things to be delayed are represented by a
special `Intention` class that "waits" until it is time to evaluate the stored
commands with a given dataframe. This is the core of how `dplyr` data manipulation
syntax is made possible in `dfply`.

(Thanks to the creators of the `dplython` and `pandas-ply` for trailblazing a lot
of this before I made this package.)

### `@pipe`

The primary decorator that enables chaining functions with the `>>` operator
is `@pipe`. For functions to work with the piping syntax they must be decorated
with `@pipe`.

Any function decorated with `@pipe` implicitly receives a single first argument
expected to be a pandas DataFrame. This is the DataFrame being passed through
the pipe. For example, `mutate` and `select` have function specifications
`mutate(df, **kwargs)` and `select(df, *args, **kwargs)`, but when used
do not require the user to insert the DataFrame as an argument.

```python
# the DataFrame is implicitly passed as the first argument
diamonds >> mutate(new_var=X.price + X.depth) >> select(X.new_var)
```

If you create a new function decorated by `@pipe`, the function definition
should contain an initial argument that represents the DataFrame being passed
through the piping operations.

```python
@pipe
def myfunc(df, *args, **kwargs):
# code
```

### `@group_delegation`

In order to delegate a function across specified groupings (assigned by the
`group_by()` function), decorate the function with the `@group_delegation`
decorator. This decorator will query the DataFrame for assigned groupings and
apply the function to those groups individually.

Groupings are assigned by `dfply` as an attribute `._grouped_by` to the DataFrame
proceeding through the piped functions. `@group_delegation` checks for the
attribute and applies the function by group if groups exist. Any hierarchical
indexing is removed by the decorator as well.

Decoration by `@group_delegation` should come after (internal) to the `@pipe`
decorator to function as intended.

```python
@pipe
@group_delegation
def myfunc(df, *args, **kwargs):
# code
```

### `@symbolic_evaluation`

Evaluation of any `Intention`-class symbolic object (such as `X`) is
handled by the `@symbolic_evaluation` function. For example, when calling
`mutate(new_price = X.price * 2.5)` the `X.price` symbolic representation of
the price column in the DataFrame will be evaluated to the actual Series
by this decorator.

The `@symbolic_evaluation` decorator can have functionality modified by
optional keyword arguments:

#### Controlling `@symbolic_evaluation` with the `eval_symbols` argument

```python
@symbolic_evaluation(eval_symbols=False)
def my_function(df, arg1, arg2):
...
```

If the `eval_symbols` argument is `True`, all symbolics will be evaluated
with the passed-in dataframe. If `False` or `None`, there will be no attempt
to evaluate symbolics.

A list can also be passed in. The list can contain a mix of positional integers
and string keywords, which reference positional arguments and keyworded arguments
respectively. This targets which arguments or keyword arguments to try and
evaluate specifically:

```python
# This indicates that arg1, arg2, and kw1 should be targeted for symbolic
# evaluation, but not the other arguments.
# Note that positional indexes reference arguments AFTER the passed-in dataframe.
# For example, 0 refers to arg1, not df.
@symbolic_evaluation(eval_symbols=[0,1,'kw1'])
def my_function(df, arg1, arg2, arg3, kw1=True, kw2=False):
...
```

In reality, you are unlikely to need this behavior unless you really want to
prevent `dfply` from trying to evaluate symbolic arguments. Remember that if
an argument is not symbolic it will be evaluated as normal, so there shouldn't
be much harm leaving it at default other than a little bit of computational overhead.

### `@dfpipe`

Most new or custom functions for dfply will be decorated with the pattern:

```python
@pipe
@group_delegation
@symbolic_evaluation
def myfunc(df, *args, **kwargs):
# code
```

Because of this, the decorator `@dfpipe` is defined as exactly this combination
of decorators for your convenience. The above decoration pattern for the function
can be simply written as:

```python
@dfpipe
def myfunc(df, *args, **kwargs):
# code
```

This allows you to easily create new functions that can be chained together
with pipes, respect grouping, and evaluate symbolic DataFrames and Series
correctly.

### `@make_symbolic`

Sometimes, like in the window and summary functions that operate on series,
it is necessary to defer the evaluation of a function. For example, in the
code below:

```python
diamonds >> summarize(price_third=nth(X.price, 3))
```

The `nth()` function would typically be evaluated before `summarize()` and the
symbolic argument would not be evaluated at the right time.

The `@make_symbolic` decorator can be placed above functions to convert them
into symbolic functions that will wait to evaluate. Again, this is used
primarily for functions that are embedded inside the function call within
the piping syntax.

The `nth()` code, for example, is below:

```python
@make_symbolic
def nth(series, n, order_by=None):
if order_by is not None:
series = order_series_by(series, order_by)
try:
return series.iloc[n]
except:
return np.nan
```

Functions you write that you want to be able to embed as an argument
can use the `@make_symbolic` to wait until they have access to the DataFrame
to evaluate.

## Contributing

By all means please feel free to comment or contribute to the package. The more
people adding code the better. If you submit an issue, pull request, or ask for
something to be added I will do my best to respond promptly.

The TODO list (now located in the "Projects" section of the repo) has an
ongoing list of things that still need to be resolved and features to be added.

If you submit a pull request with features or bugfixes, please target the
"develop" branch rather than the "master" branch.