Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kieranrcampbell/ouija
Descriptive probabilistic marker gene approach to single-cell pseudotime inference
https://github.com/kieranrcampbell/ouija
bayesian-methods factor-analysis gene-expression single-cell
Last synced: about 2 months ago
JSON representation
Descriptive probabilistic marker gene approach to single-cell pseudotime inference
- Host: GitHub
- URL: https://github.com/kieranrcampbell/ouija
- Owner: kieranrcampbell
- Created: 2016-03-30T12:44:36.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-11-29T16:11:10.000Z (about 5 years ago)
- Last Synced: 2024-08-02T16:45:15.940Z (5 months ago)
- Topics: bayesian-methods, factor-analysis, gene-expression, single-cell
- Language: R
- Homepage: http://kieranrcampbell.github.io/ouija
- Size: 9.05 MB
- Stars: 28
- Watchers: 6
- Forks: 3
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Ouija
Ouija is a probabilistic pseudotime framework. Ouija
* infers pseudotimes from a **small number of marker genes** letting you understand **why** the pseudotimes have been learned in terms of those genes (**A**)
* provides parameter estimates (with uncertainty) for **interpretable gene regulation behaviour** (such as the peak time or the upregulation time) (**B**)
* has a Bayesian hypothesis test to **find genes regulated before others** along the trajectory (**C**)
* identifies **metastable states**, ie discrete cell types along the continuous trajectory (**D**)## Getting started
### Installation
```r
# install.packages("devtools")
devtools::install_github("kieranrcampbell/ouija")
```To build the Ouija vignette install using
```r
devtools::install_github("kieranrcampbell/ouija", local = FALSE,
args = "--preclean", build_vignettes = TRUE)
```### Model fitting
Input is a cell-by-gene expression matrices that is non-negative and represents logged gene expression values. We recommend using `log2(TPM + 1)`. This can either take the form of a matrix or a [`SingleCellExperiment`](https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html) (use of the `SingleCellExperiment` infrastructure is highly encouraged for single-cell analyses). By default the `logcounts` assay of a `SingleCellExperiment` will be used.
To fit the pseudotimes, pass the input data to the `ouija` function:
```r
library(ouija)
data(example_gex) # synthetic gene expression data bundled
oui <- ouija(example_gex)
pseudotimes <- map_pseudotime(oui)
```The `map_pseudotimes` function extracts the maximum-a-posteriori (MAP) estimates of the pseudotimes.
For further usage options see the vignette. A prebuilt vignette can be found [here](http://kieranrcampbell.github.io/ouija).
## Authors
Kieran Campbell & Christopher Yau
Wellcome Trust Centre for Human Genetics, University of Oxford## Artwork
Artwork by `cwcyau`, the mysterious banksy-esque artist of the statistical genomics world.