Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kieranrcampbell/ouijaflow
Probabilistic single-cell pseudotime with Edward+Tensorflow
https://github.com/kieranrcampbell/ouijaflow
Last synced: about 2 months ago
JSON representation
Probabilistic single-cell pseudotime with Edward+Tensorflow
- Host: GitHub
- URL: https://github.com/kieranrcampbell/ouijaflow
- Owner: kieranrcampbell
- Created: 2017-10-05T14:27:30.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2017-10-05T17:08:56.000Z (about 7 years ago)
- Last Synced: 2024-05-21T23:06:35.422Z (7 months ago)
- Language: Python
- Size: 6.84 KB
- Stars: 12
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ouijaflow
`ouijaflow` implements the probabilistic single-cell pseudotime model Ouija in Edward and Tensorflow, allowing scalable inference on large single-cell datasets. Inference is performed using reparametrization gradient variational inference.
# Getting started
At present `ouijaflow` may be in stalled via
```
pip install git+https://github.com/kieranrcampbell/ouijaflow.git
```Fitting pseudotimes with Ouijaflow is straightforward, following the `sklearn` syntax. If `Y` is a cell-by-gene numpy array of non-negative log expression values, then the pseudotimes may be fit via
```python
from ouijaflow import ouija
oui = ouija()
oui.fit(Y)
```The pseudotimes can be extracted using the `trajectory` function:
```python
z = oui.trajectory()
```The gene-specific behaviour may be extracted using the `gene_behaviour` function:
```python
oui.gene_behaviour()
```which returns a pandas data frame with interpretable gene parameters as explained in `oui.gene_behaviour.__doc__`.
For more fine-grained control over the posterior distributions, the approximating distributions may be retrieved in a dictionary using
```python
oui.approx_dists()
```