https://github.com/kijai/ComfyUI-KwaiKolorsWrapper
Diffusers wrapper to run Kwai-Kolors model
https://github.com/kijai/ComfyUI-KwaiKolorsWrapper
Last synced: 6 months ago
JSON representation
Diffusers wrapper to run Kwai-Kolors model
- Host: GitHub
- URL: https://github.com/kijai/ComfyUI-KwaiKolorsWrapper
- Owner: kijai
- License: apache-2.0
- Created: 2024-07-06T16:32:40.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-10-18T08:47:45.000Z (8 months ago)
- Last Synced: 2024-12-14T13:06:37.840Z (6 months ago)
- Language: Python
- Homepage:
- Size: 610 KB
- Stars: 566
- Watchers: 9
- Forks: 29
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-comfyui - **ComfyUI-KwaiKolorsWrapper** - Kolors](https://huggingface.co/Kwai-Kolors/Kolors) text2image pipeline using diffusers. (All Workflows Sorted by GitHub Stars)
README
# ComfyUI wrapper for Kwai-Kolors
Rudimentary wrapper that runs Kwai-Kolors text2image pipeline using diffusers.
## Update - safetensors
Added alternative way to load the ChatGLM3 model from single safetensors file (the configs are included in this repo already).
Including already quantized models:
https://huggingface.co/Kijai/ChatGLM3-safetensors/upload/main
goes into:
`ComfyUI\models\LLM\checkpoints`

## Installation:
Clone this repository to 'ComfyUI/custom_nodes` folder.
Install the dependencies in requirements.txt, transformers version 4.38.0 minimum is required:
`pip install -r requirements.txt`
or if you use portable (run this in ComfyUI_windows_portable -folder):
`python_embeded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-KwaiKolorsWrapper\requirements.txt`
Models (fp16, 16.5GB) are automatically downloaded from https://huggingface.co/Kwai-Kolors/Kolors/tree/main
to `ComfyUI/models/diffusers/Kolors`
Model folder structure needs to be the following:
```
PS C:\ComfyUI_windows_portable\ComfyUI\models\diffusers\Kolors> tree /F
│ model_index.json
│
├───scheduler
│ scheduler_config.json
│
├───text_encoder
│ config.json
│ pytorch_model-00001-of-00007.bin
│ pytorch_model-00002-of-00007.bin
│ pytorch_model-00003-of-00007.bin
│ pytorch_model-00004-of-00007.bin
│ pytorch_model-00005-of-00007.bin
│ pytorch_model-00006-of-00007.bin
│ pytorch_model-00007-of-00007.bin
│ pytorch_model.bin.index.json
│ tokenizer.model
│ tokenizer_config.json
│ vocab.txt
│
└───unet
config.json
diffusion_pytorch_model.fp16.safetensors
```
To run this, the text enconder is what takes most of the VRAM, but can be quantized to fit approximately these amounts:| Model | Size |
|--------|------|
| fp16 | ~13 GB|
| quant8 | ~8 GB |
| quant4 | ~4 GB |After that, the sampling single image at 1024 can be expected to take similar amounts than SDXL. For VAE the base SDXL VAE is used.

