An open API service indexing awesome lists of open source software.

https://github.com/kimrass/conditional-wgan-gp

PyTorch implementation of 'Conditional GAN' (Mirza et al., 2014) & 'WGAN-GP' (Gulrajani et. al., 2017) and training it on MNIST
https://github.com/kimrass/conditional-wgan-gp

mnist pytorch wgan-gp

Last synced: 6 months ago
JSON representation

PyTorch implementation of 'Conditional GAN' (Mirza et al., 2014) & 'WGAN-GP' (Gulrajani et. al., 2017) and training it on MNIST

Awesome Lists containing this project

README

          

# 1. Pre-trained Model
- [cwgan_gp_mnist.pth](https://drive.google.com/file/d/1WsswjXwoe4h8eCL2vhIfNAMI97-Kr-3D/view?usp=sharing)
```python
seed=888
n_epochs=50
batch_size=64
lr=0.0002
d_hidden_dim=32
g_latent_dim=100
g_hidden_dom=32
gp_weight=10
n_d_updates=3
```

# 2. Samples
-

# 3. Implementation Details
## 1) Architecture
- [1]에서 Architecture를 가져와서 몇 가지를 변경했습니다.
- Discriminator:
- 첫 번째 Convolutional layer 다음에 Batch normalization layer를 추가했습니다.
- Generator:
- 마지막 Transposed convolutional layer에서 `bias=True`로 변경했습니다.
- ReLU activation을 Leaky ReLU activation으로 변경했습니다.
- 이렇게 변경함으로써 샘플의 퀄리티가 상승했습니다.

# 4. References
- [1] https://github.com/AKASHKADEL/dcgan-mnist/blob/master/networks.py