An open API service indexing awesome lists of open source software.

https://github.com/kimrass/ddim

PyTorch implementation of 'DDIM' (Jiaming Song et al., 2020).
https://github.com/kimrass/ddim

celeba ddim pytorch

Last synced: 3 months ago
JSON representation

PyTorch implementation of 'DDIM' (Jiaming Song et al., 2020).

Awesome Lists containing this project

README

        

# 1. Sampling
## 1) "normal" Mode
| `mode="normal"`, `trunc_normal_thresh=None` |
|:-:|
| |
## 2) "interpolation" Mode
| `mode="interpolation"` |
|:-:|
| |
| |
| |
| |

## 3) "grid_interpolation" Mode
| `mode="grid_interpolation"` |
|:-:|
| |
| |

# 2. Experiments
## 1) Truncated Normal
| `mode="normal"`, `trunc_normal_thresh=0.1` | `mode="normal"`, `trunc_normal_thresh=0.5` |
|:-:|:-:|
| | |

| `mode="normal"`, `trunc_normal_thresh=1` | `mode="normal"`, `trunc_normal_thresh=1.5` |
|:-:|:-:|
| | |

| `mode="normal"`, `trunc_normal_thresh=2` | `mode="normal"`, `trunc_normal_thresh=2.5` |
|:-:|:-:|
| | |

| `mode="normal"`, `trunc_normal_thresh=3` |
|:-:|
| |

# 3. Theoretical Background
- "Predicted $x_{0}$":
$$\frac{x_{t} - \sqrt{1 - \alpha_{t}}\epsilon_{\theta}^{(t)}(x_{t})}{\sqrt{\alpha_{t}}}$$
- "Direction pointing to $x_{t}$":
$$\sqrt{1 - \alpha_{t - 1} - \sigma_{t}^{2}} \epsilon_{\theta}^{(t)}(x_{t})$$
## 1) Backward (Denoising) Process
$$x_{t - 1} = \sqrt{\alpha_{t - 1}}\Bigg(\frac{x_{t} - \sqrt{1 - \alpha_{t}}\epsilon_{\theta}}{\sqrt{\alpha_{t}}}\Bigg) + \sqrt{1 - \alpha_{t - 1}}\epsilon_{\theta}$$