Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kirillseva/tune
efficient hyperparameter tuning in R
https://github.com/kirillseva/tune
Last synced: 8 days ago
JSON representation
efficient hyperparameter tuning in R
- Host: GitHub
- URL: https://github.com/kirillseva/tune
- Owner: kirillseva
- Created: 2016-04-02T16:12:36.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2016-04-02T18:35:26.000Z (over 8 years ago)
- Last Synced: 2024-08-13T07:13:26.781Z (4 months ago)
- Language: R
- Homepage:
- Size: 1.95 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- jimsghstars - kirillseva/tune - efficient hyperparameter tuning in R (R)
README
# tune: efficient hyperparameter tuning in R [![Build Status](https://travis-ci.org/kirillseva/tune.svg?branch=master)](https://travis-ci.org/kirillseva/tune)
An R alternative to python's [hyperopt](https://github.com/hyperopt/hyperopt) and [spearmint](https://github.com/JasperSnoek/spearmint)
This implementation does not focus on the multi-core optimizations like hyperopt. Instead, it is assumed that your machine learning classifier is already using all available resources, hence linear approach will be just as fast on a single machine.