Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kitware/seaborn_altair
Seaborn-compatible API for interactive Vega-Lite plots via Altair
https://github.com/kitware/seaborn_altair
Last synced: about 2 months ago
JSON representation
Seaborn-compatible API for interactive Vega-Lite plots via Altair
- Host: GitHub
- URL: https://github.com/kitware/seaborn_altair
- Owner: Kitware
- License: apache-2.0
- Created: 2018-06-02T23:52:02.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-09-01T02:11:23.000Z (over 6 years ago)
- Last Synced: 2024-04-24T09:20:02.863Z (8 months ago)
- Language: Jupyter Notebook
- Homepage: https://kitware.github.io/seaborn_altair/
- Size: 17.5 MB
- Stars: 20
- Watchers: 5
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# seaborn_altair
Seaborn-compatible API for interactive Vega-Lite plots via Altair.
## Installation
pip install seaborn_altair
Works in Jupyter lab or Jupyter notebooks.
## Usage
import seaborn_altair as salt
import seaborn as sns
tips = sns.load_dataset("tips")# Use salt as you would sns
salt.barplot(x="day", y="total_bill", data=tips)![barplot](https://github.com/kitware/seaborn_altair/raw/master/img/visualization.png)
## API
This is only a proof of concept at this time. Only a subset of Seaborn plots (the ones with example links) are currently available with limited support.
### Axis grids
* [FacetGrid](http://kitware.github.io/seaborn_altair/facetgrid.html) Subplot grid for plotting conditional relationships.
* [catplot](http://kitware.github.io/seaborn_altair/catplot.html) Draw a categorical plot onto a FacetGrid.
* [lmplot](http://kitware.github.io/seaborn_altair/lmplot.html) Plot data and regression model fits across a FacetGrid.
* PairGrid Subplot grid for plotting pairwise relationships in a dataset.
* pairplot Plot pairwise relationships in a dataset.
* JointGrid Grid for drawing a bivariate plot with marginal univariate plots.
* jointplot Draw a plot of two variables with bivariate and univariate graphs.### Categorical plots
* [stripplot](http://kitware.github.io/seaborn_altair/stripplot.html) Draw a scatterplot where one variable is categorical.
* swarmplot Draw a categorical scatterplot with non-overlapping points.
* [boxplot](http://kitware.github.io/seaborn_altair/boxplot.html) Draw a box plot to show distributions with respect to categories.
* violinplot Draw a combination of boxplot and kernel density estimate.
* lvplot Draw a letter value plot to show distributions of large datasets.
* [pointplot](http://kitware.github.io/seaborn_altair/pointplot.html) Show point estimates and confidence intervals using scatter plot glyphs.
* [barplot](http://kitware.github.io/seaborn_altair/barplot.html) Show point estimates and confidence intervals as rectangular bars.
* [countplot](http://kitware.github.io/seaborn_altair/countplot.html) Show the counts of observations in each categorical bin using bars.### Distribution plots
* distplot Flexibly plot a univariate distribution of observations.
* kdeplot Fit and plot a univariate or bivariate kernel density estimate.
* rugplot Plot datapoints in an array as sticks on an axis.### Regression plots
* [regplot](http://kitware.github.io/seaborn_altair/regplot.html) Plot data and a linear regression model fit.
* residplot Plot the residuals of a linear regression.### Matrix plots
* heatmap Plot rectangular data as a color-encoded matrix.
* clustermap Plot a matrix dataset as a hierarchically-clustered heatmap.### Timeseries plots
* tsplot Plot one or more timeseries with flexible representation of uncertainty.### Miscellaneous plots
* palplot Plot the values in a color palette as a horizontal array.### matplotlib.pyplot utilities
* [pyplot.hist](http://kitware.github.io/seaborn_altair/pyplot-hist.html)
* [pyplot.plot](http://kitware.github.io/seaborn_altair/pyplot-plot.html)
* [pyplot.scatter](http://kitware.github.io/seaborn_altair/pyplot-scatter.html)## Credit
Idea from [Jake VanderPlas](https://twitter.com/jakevdp/status/996041414596214784). [I](https://twitter.com/jeffbaumes) know Python and Vega-Lite reasonably well, so decided to give it a shot.
Contributions and suggestions welcome!