Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kiudee/cs-ranking

Context-sensitive ranking and choice in Python with PyTorch
https://github.com/kiudee/cs-ranking

choice-model context-aware deep-learning discrete-choice learning-to-rank machine-learning neural-networks object-ranking pytorch ranking tensorflow

Last synced: 3 months ago
JSON representation

Context-sensitive ranking and choice in Python with PyTorch

Awesome Lists containing this project

README

        

|Coverage| |Binder|

****
NOTE
****

This library has recently been migrated from tensorflow to PyTorch. The 2.0
version marks a breaking change. Some of the previous functionality is now
unavailable and some classes behave differently. You can use the latest 1.x
release if you are looking for the tensorflow based estimators.

*******
CS-Rank
*******

CS-Rank is a Python package for context-sensitive ranking and choice
algorithms.

We implement the following new object ranking/choice architectures:

* FATE (First aggregate then evaluate)
* FETA (First evaluate then aggregate)

In addition, we also implement these algorithms for choice functions:

* RankNetChoiceFunction
* GeneralizedLinearModel
* PairwiseSVMChoiceFunction

These are the state-of-the-art approaches implemented for the discrete choice
setting:

* GeneralizedNestedLogitModel
* MixedLogitModel
* NestedLogitModel
* PairedCombinatorialLogit
* RankNetDiscreteChoiceFunction
* PairwiseSVMDiscreteChoiceFunction

Getting started
===============
As a simple "Hello World!"-example we will try to learn the Pareto problem:

.. code-block:: python

import csrank as cs
from csrank import ChoiceDatasetGenerator
gen = ChoiceDatasetGenerator(dataset_type='pareto',
n_objects=30,
n_features=2)
X_train, Y_train, X_test, Y_test = gen.get_single_train_test_split()

All our learning algorithms are implemented using the scikit-learn estimator
API. Fitting our FATENet architecture is as simple as calling the ``fit``
method:

.. code-block:: python

fate = cs.FATEChoiceFunction()
fate.fit(X_train, Y_train)

Predictions can then be obtained using:

.. code-block:: python

fate.predict(X_test)

Installation
------------
The latest release version of CS-Rank can be installed from Github as follows::

pip install git+https://github.com/kiudee/cs-ranking.git

Another option is to clone the repository and install CS-Rank using::

python setup.py install

Dependencies
------------
CS-Rank depends on PyTorch, skorch, NumPy, SciPy, matplotlib, scikit-learn,
joblib and tqdm. For data processing and generation you will
also need PyGMO, H5Py and pandas.

Citing CS-Rank
----------------
You can cite our `arXiv papers`_::

@article{csrank2019,
author = {Karlson Pfannschmidt and
Pritha Gupta and
Eyke H{\"{u}}llermeier},
title = {Learning Choice Functions: Concepts and Architectures },
journal = {CoRR},
volume = {abs/1901.10860},
year = {2019}
}

@article{csrank2018,
author = {Karlson Pfannschmidt and
Pritha Gupta and
Eyke H{\"{u}}llermeier},
title = {Deep architectures for learning context-dependent ranking functions},
journal = {CoRR},
volume = {abs/1803.05796},
year = {2018}
}

License
--------
`Apache License, Version 2.0 `_

.. |Binder| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/kiudee/cs-ranking/master?filepath=docs%2Fnotebooks

.. |Coverage| image:: https://codecov.io/gh/kiudee/cs-ranking/branch/master/graph/badge.svg
:target: https://codecov.io/gh/kiudee/cs-ranking

..
|Build Status| image:: https://img.shields.io/github/workflow/status/kiudee/cs-ranking/tests
:target: https://github.com/kiudee/cs-ranking/actions
:alt: GitHub Workflow Status

.. _interactive notebooks: https://mybinder.org/v2/gh/kiudee/cs-ranking/master?filepath=docs%2Fnotebooks
.. _arXiv papers: https://arxiv.org/search/cs?searchtype=author&query=Pfannschmidt%2C+K