https://github.com/kleinyuan/tf-object-detection
Simpler app for tensorflow object detection API
https://github.com/kleinyuan/tf-object-detection
faster-rcnn faster-rcnn-inception-resnet faster-rcnn-resnet mobilenet object-detection rfcn-resnet ssd ssd-inceptionv2 ssd-mobilenet tensorflow tensorflow-examples tensorflow-models
Last synced: 2 months ago
JSON representation
Simpler app for tensorflow object detection API
- Host: GitHub
- URL: https://github.com/kleinyuan/tf-object-detection
- Owner: KleinYuan
- License: mit
- Created: 2017-09-13T07:44:44.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2018-06-09T06:41:20.000Z (about 7 years ago)
- Last Synced: 2025-04-07T02:03:05.216Z (3 months ago)
- Topics: faster-rcnn, faster-rcnn-inception-resnet, faster-rcnn-resnet, mobilenet, object-detection, rfcn-resnet, ssd, ssd-inceptionv2, ssd-mobilenet, tensorflow, tensorflow-examples, tensorflow-models
- Language: Python
- Size: 4.57 MB
- Stars: 93
- Watchers: 6
- Forks: 37
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Scope
This repo is aiming to provide production ready **2D object detection** code basics.
It's based on official tensorflow API jupyter notebook but I will gradually add more popular models such as `yolo` series.
### More
If you are interested in **3D object detection**, visit this [repo](https://github.com/KleinYuan/tf-3d-object-detection).
If you are interested in **Segmentation**, visit this [repo](https://github.com/KleinYuan/tf-segmentation).
# Introduction
This is a repo for implementing object detection with pre-trained models (as shown below) on tensorflow.
| Model name | Speed | COCO mAP | Outputs |
| ------------ | :--------------: | :--------------: | :-------------: |
| [ssd_mobilenet_v1_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz) | fast | 21 | Boxes |
| [ssd_inception_v2_coco](http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_11_06_2017.tar.gz) | fast | 24 | Boxes |
| [rfcn_resnet101_coco](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_11_06_2017.tar.gz) | medium | 30 | Boxes |
| [faster_rcnn_resnet101_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz) | medium | 32 | Boxes |
| [faster_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017.tar.gz) | slow | 37 | Boxes |Dependencies:
- [X] Tensorflow >= 1.2.0
- [X] OpenCV# Run Demo
```
# Clone this repo
git clone https://github.com/KleinYuan/tf-object-detection.git# Setting up
cd tf-object-detection
bash setup.sh# Run demo
python app.py```

# Image Classifications
I also put an image classifications inference app (VGG16) here.
```
# Assuming you already run setup.sh, which will download vgg16.nppython app_ic.py
```# Networks
| Model name | Architecture|
| ------------ | :--------------: |
| [AlextNet](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) | |
| [Vgg 16](https://arxiv.org/abs/1409.1556) | |
| [SSD](https://arxiv.org/abs/1512.02325) | |
| [ResNet](http://arxiv.org/abs/1512.03385)||
| [MobileNet](https://arxiv.org/abs/1704.04861)| |
| [Faster R-CNN](https://arxiv.org/abs/1506.01497) | |