Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/klumw/keyword_detection
Key word/wake word detection with espressif esp32s3
https://github.com/klumw/keyword_detection
ai-model audio-detection devkit edge-impulse esp-nn esp32s3 esp32s3-devkitc-1 espressif key-word key-word-spotter ml-model tensorflow tensorflow-micro wake-word
Last synced: about 1 month ago
JSON representation
Key word/wake word detection with espressif esp32s3
- Host: GitHub
- URL: https://github.com/klumw/keyword_detection
- Owner: klumw
- License: apache-2.0
- Created: 2023-10-10T12:00:26.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-09T18:42:16.000Z (12 months ago)
- Last Synced: 2024-09-29T18:44:17.102Z (about 2 months ago)
- Topics: ai-model, audio-detection, devkit, edge-impulse, esp-nn, esp32s3, esp32s3-devkitc-1, espressif, key-word, key-word-spotter, ml-model, tensorflow, tensorflow-micro, wake-word
- Language: C
- Homepage:
- Size: 4.4 MB
- Stars: 8
- Watchers: 1
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Key Word/Wake Word Detection for ESP32-S3-DevKitC-1
## Project highlights
* ML audio model easily created using [Edge Impulse](https://edgeimpulse.com/)
* Default classification of key words 'yes' and 'no' with ESP32-S3
* Use of latest esp-nn optimized neural network library
* Audio processing using I2S microphone
* Easy exchange of ML models thanks to standardized C++ library
* Ideal template to program your own wake word or key word detection
* Blinks green if 'yes' is detected, red if 'no' is detected[Edge Impulse](https://edgeimpulse.com/) is an open-source platform for machine learning on edge devices.
It allows developers to create and deploy ML models for their edge devices without
requiring deep knowledge of machine learning or embedded systems.### The Espressif [esp32-s3](https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf) microcontroller is particularly well-suited for AI applications because it
* has a powerful dual-core processor with a 240 MHz clock frequency
* has an integrated Neural Network Accelerator (NNA) that accelerates the processing of AI models
* supports a wide range of interfaces and sensors## Prerequisites
* ESP-IDF >= v5.1
* [ESP-32-S3-DevKitC-1](https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html) or similar board
* I2S microphone, e.g. [SKU 107990153](https://www.seeedstudio.com/Sipeed-I2S-Mic-for-MAIX-Dev-Boards-p-2887.html)### Circuit Diagram
### Clone this repo with submodules
git clone --recurse-submodules https://github.com/klumw/keyword_detection.git
### Build with idf.py
idf.py set-target esp32s3
idf.py build