Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kmohamedalie/dtm_deep_learning_euclid_dataset
Euclid Dataset
https://github.com/kmohamedalie/dtm_deep_learning_euclid_dataset
computer-vision convolutional-neural-networks deep-neural-networks geometry machine-learning mathematics
Last synced: 7 days ago
JSON representation
Euclid Dataset
- Host: GitHub
- URL: https://github.com/kmohamedalie/dtm_deep_learning_euclid_dataset
- Owner: Kmohamedalie
- License: mit
- Created: 2023-04-26T05:03:08.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2023-08-20T10:04:39.000Z (about 1 year ago)
- Last Synced: 2023-08-20T11:26:38.738Z (about 1 year ago)
- Topics: computer-vision, convolutional-neural-networks, deep-neural-networks, geometry, machine-learning, mathematics
- Language: Jupyter Notebook
- Homepage: https://www.unibo.it/it/didattica/insegnamenti/insegnamento/2022/466769
- Size: 26.3 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# **Pattern recognition using CNN**
The Euclid dataset was created by Prof. Guido Borghi at the University of Bologna for pedagogical purpose, for trainig both computer and non-computer science students Machine and Deep Learning in the Digital Transformation Management degree. The entire dataset consist 8000 black&white images with size 224x224 and four(4) different category of geometrical shapes: rectangle, rhombus , square and triangle respectively.**Complete Jupyter Notebook:** [Link](https://github.com/Kmohamedalie/DTM_Deep_learning_Euclid_dataset/blob/master/Euclid_Dataset_DL.ipynb)
Final output:
Validation accurary: 97.90%
Training time: 7m 16s
Resources: Google Colab Standard GPU
Model Architecture: 2Cov, 2MaxPool, Flatten, Dense, Final output
![image](https://user-images.githubusercontent.com/63104472/234478794-67bf1708-89d8-4d53-b143-6afc3d815e08.png)
Try the model yourself:
You can download the already trained model load it to your IDE and make prediction: