Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kmonsoor/data-must-watch
Must-watch videos on data-science
https://github.com/kmonsoor/data-must-watch
Last synced: about 1 month ago
JSON representation
Must-watch videos on data-science
- Host: GitHub
- URL: https://github.com/kmonsoor/data-must-watch
- Owner: kmonsoor
- License: mit
- Created: 2015-10-26T12:08:09.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2015-11-30T23:04:02.000Z (about 9 years ago)
- Last Synced: 2024-08-02T05:14:50.855Z (4 months ago)
- Size: 0 Bytes
- Stars: 46
- Watchers: 10
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesomelist - data-science-must-watch
- fucking-lists - data-science-must-watch
- collection - data-science-must-watch
- lists - data-science-must-watch
README
# Must-watch videos on Data Science
This list tries to cover from basic introductory staffs to deep analytical staffs on industry-renowned tools.
Inspired by [py-must-watch](https://github.com/s16h/py-must-watch).
### Contribution
Please create pull requests to suggest more awesome video links. However, please don't add too many in a single pull-request. :)
Please add your name in the file **contributors.md** file, if possible, in the same pull-request you make to add new video in the main list.Thanks !
------------------------------------------------------
## Intro into Data-science
* DJ Patil: **Data Science, how to be data driven and build great products** (BBVA Innovation Center, 2014)
* Video: [youtube](https://www.youtube.com/watch?v=54t7bSXniAs) [1:22:37]
* Comments: A great intro. Potrays Spock(Star Trek) as ship's data scientist.* Micheael Manoochehri: **Data Just Right: A Practical Introduction to Data Science Skills** (DataEDGE 2013)
* Video: [youtube](https://www.youtube.com/watch?v=rpwZ_i-9U0o) [1:24:50]
* Slides: [Google Docs](http://goo.gl/sCmF0)
* Comments: awesome intro* Ryan Orban: **How To Become A Data Scientist** (SF Data Science)
* Video: [youtube](https://www.youtube.com/watch?v=c52IOlnPw08) [59:07]
* Slides: [slideshare](http://www.slideshare.net/ryanorban/how-to-become-a-data-scientist)
* Comments: Audio is a bit hazy with background noise* Buck Woody: **Becoming a Data Professional: Taking It To The Next Level** (The DRIVE/conference 2013)
* Video: [youtube](https://www.youtube.com/watch?v=Zdh3p4EKLeQ) [57:05]
* Notes: [MSDN Blog](http://blogs.msdn.com/b/buckwoody/archive/2013/02/21/link-list-becoming-a-data-professional.aspx)
* Comments:## Machine Learning
* Dr. Andrew Ng: **CS 229: Machine Learning** (Stanford Lecture series 2008)
* Video: [youtube](https://www.youtube.com/view_play_list?p=A89DCFA6ADACE599) (20 videos, 1+Hr each)
* Lecture materials: [Handouts](http://cs229.stanford.edu/materials.html), [course-home](http://cs229.stanford.edu/)
* [Dr. Yaser S. Abu-Mostafa](https://work.caltech.edu/index.html): **Learning from Data** (from Caltech)
* Lecture materials: [Handouts/Videos/Homeworks](https://work.caltech.edu/telecourse.html)
* Comments: A self-paced advanced course on Machine Learning
* Jake VanderPlas: Machine Learning with Scikit-Learn (I) (PyCon 2015)
* Video: [youtube](https://www.youtube.com/watch?v=L7R4HUQ-eQ0)[3:02:11]
* Lecture materials: [codes](https://github.com/jakevdp/sklearn_pycon2015), [IPython Notebook](http://nbviewer.ipython.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb)## Statistical Methods
* Chris Fonnesbeck: **Statistical Thinking for Data Science** (SciPy 2015)
* Video: [youtube](https://www.youtube.com/watch?v=TGGGDpb04Yc) [23:49]## Algorithms
* Presenter-name: **Title of the video** (Event, Year)
* Video: [video link] [length-of-video]
* Slides: [slide link]
* [Misc resources](link)
*## Mathematics
* Presenter-name: **Title of the video** (Event, Year)
* Video: [video link] [length-of-video]
* Slides: [slide link]
* [Misc resources](link)
*## Intro on Hadoop Ecosystem
* Bill Graham: **Intro to Hadoop** (Part of BerkeleyiSchool course Info290:"Analyzing Big Data With Twitter", 2012)
* Video: [youtube](https://www.youtube.com/watch?v=t3fEGhE-HYA) [1:22:26]
* Slides: [presentation](http://blogs.ischool.berkeley.edu/i290-abdt-s12/files/2012/08/BillGraham_IntroToHadoop_Aug30.pdf)
*## HDFS
* Andrew Collette: **HDF5 is Eating the World** (SciPy 2015)
* Video: (Youtube)[https://www.youtube.com/watch?v=nddj5OA8LJo] [18:30]
* Slides:* Quincey Koziol: **Title of the video** (2014)
* Video: (Youtube)[https://www.youtube.com/watch?v=IN1bqxj4pxE] [1:17:09]
* Slides: (mcs.anl.gov)[http://press3.mcs.anl.gov/computingschool/files/2014/01/QKHDF5-Intro-v2.pdf]## Spark
* Presenter-name: **Title of the video** (Event, Year)
* Video: [video link] [length-of-video]
* Slides: [slide link]
* [Misc resources](link)
*## Python-based analysis
* Wes McKinney: **My Data Journey with Python** (SciPy 2015)
* Video: [youtube](https://www.youtube.com/watch?v=kHdkFyGCxiY) [47:45]
* Slides: [SlideShare](http://www.slideshare.net/wesm/my-data-journey-with-python)
* Sarah Guido: **Hands-on Data Analysis with Python** (PyCon 2015)
* Video: [Youtube](https://www.youtube.com/watch?v=L4Hbv4ugUWk) [2:54:57]
* Jonathan Rocher: **Analyzing and Manipulating Data with Pandas** (SciPy 2015 Tutorial )
* Video: [Youtube](https://www.youtube.com/watch?v=0CFFTJUZ2dc)
* [Exercise and tutorial instructions](https://github.com/jonathanrocher/pandas_tutorial)
* Andreas Mueller & Kyle Kastner: **Machine Learning with Scikit Learn** (SciPy 2015 Tutorial)
* Video: [Part I](https://www.youtube.com/watch?v=80fZrVMurPM), [Part II](https://www.youtube.com/watch?v=Ud-FsEWegmA)
* [Tutorial Materials](https://github.com/amueller/scipy_2015_sklearn_tutorial)## R-based analysis
* David Langer: **Introduction to Data Science with R - Data Analysis** (2014)
* Video: [https://www.youtube.com/watch?v=32o0DnuRjfg&index=1&list=PLTJTBoU5HOCRrTs3cJK-PbHM39cwCU0PF] [1:21:49]
* Source code: [https://github.com/EasyD/IntroToDataScience]
* This is the first video of a two-part tutorial.## Uncategorized
* Presenter-name: **Title of the video** (Event, Year)
* Video: [video link] [length-of-video]
* Slides: [slide link]
* comments
*