Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/knorth55/chainer-fcis

[This project has moved to ChainerCV] Chainer Implementation of Fully Convolutional Instance-aware Semantic Segmentation
https://github.com/knorth55/chainer-fcis

chainer chainercv chainermn computer-vision convolutional-neural-networks deep-learning inference instance-segmentation machine-learning python training

Last synced: about 2 months ago
JSON representation

[This project has moved to ChainerCV] Chainer Implementation of Fully Convolutional Instance-aware Semantic Segmentation

Awesome Lists containing this project

README

        

# This project has moved to [ChainerCV](https://github.com/chainer/chainercv).

chainer-fcis - FCIS
===================
[![PyPI Version](https://img.shields.io/pypi/v/fcis.svg)](https://pypi.python.org/pypi/fcis)
![Build Status](https://travis-ci.org/knorth55/chainer-fcis.svg?branch=master)

![Example](static/coco_example.png)

This is [Chainer](https://github.com/chainer/chainer) implementation of [Fully Convolutional Instance-aware Semantic Segmentation](https://arxiv.org/abs/1611.07709).

Original Mxnet repository is [msracver/FCIS](https://github.com/msracver/FCIS).

Requirement
-----------

- [CuPy](https://github.com/cupy/cupy)
- [Chainer](https://github.com/chainer/chainer)
- [ChainerCV](https://github.com/chainer/chainercv)
- OpenCV2

Additional Requirement
----------------------
- For COCO Dataset class
- [Cython](http://cython.org/)
- [pycocotools](https://github.com/cocodataset/cocoapi)

- For COCO Training
- [OpenMPI](https://www.open-mpi.org/)
- [nccl](https://developer.nvidia.com/nccl)
- [ChainerMN](https://github.com/chainer/chainermn)

Notification
------------
- Only GPU implementation, No CPU implementation yet.

TODO
----
- VOC
- [ ] Reproduce original repo training accuracy
- COCO
- [ ] Reproduce original repo training accuracy
- [ ] Refine evaluation code

Installation
------------

We recommend to use [Anacoda](https://anaconda.org/).

```bash
# Requirement installation
conda create -n fcis python=2.7
conda install -c menpo opencv
source activate fcis
pip install cupy

# Installation
pip install fcis
```

Inference
---------
```bash
cd examples/coco/
python demo.py
```

Above is our implementation output, and below is original.


Training
--------

```bash
cd examples/voc/
python train.py
```

LICENSE
-------
[MIT LICENSE](LICENSE)

Powered by [DL HACKS](http://deeplearning.jp/hacks/)