An open API service indexing awesome lists of open source software.

https://github.com/koalaverse/sure

Surrogate residuals for cumulative link and general regression models in R
https://github.com/koalaverse/sure

categorical-data diagnostics ordinal-regression residuals

Last synced: 3 days ago
JSON representation

Surrogate residuals for cumulative link and general regression models in R

Awesome Lists containing this project

README

        

---
output:
md_document:
variant: markdown_github
---

```{r setup, echo = FALSE}
knitr::opts_chunk$set(
cache = TRUE,
collapse = TRUE,
comment = "#>",
fig.align = "center",
fig.path = "man/figures/README-"
)
```

# sure: Surrogate Residuals

[![Build Status](https://travis-ci.org/koalaverse/sure.svg?branch=master)](https://travis-ci.org/koalaverse/sure)
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/koalaverse/sure?branch=master&svg=true)](https://ci.appveyor.com/project/koalaverse/sure)
[![codecov](https://codecov.io/gh/koalaverse/sure/branch/master/graph/badge.svg)](https://codecov.io/gh/koalaverse/sure)

## Overview

An R package for constructing **SU**rrogate-based **RE**siduals and diagnostics for ordinal and general regression models; based on the approach described in [Dungang and Zhang (2017)](http://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1292915?journalCode=uasa20).

## Installation

The `sure` package is [currently listed on CRAN](https://CRAN.R-project.org/package=sure) and can easily be installed:
```r
# Install from CRAN (recommended)
install.packages("sure")

# Alternatively, install the development version from GitHub
if (!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("koalaverse/sure")
```

## References

Liu, D. and Zhang, H. Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach.
*Journal of the American Statistical Association* (accepted). URL
http://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1292915?journalCode=uasa20

Greenwell, B.M., McCarthy, A.J., Boehmke, B.C. & Dungang, L. (2018) "Residuals and diagnostics for binary and ordinal regression models: An introduction to the sure package." The R Journal (pre-print). URL https://journal.r-project.org/archive/2018/RJ-2018-004/index.html