https://github.com/koalaverse/sure
Surrogate residuals for cumulative link and general regression models in R
https://github.com/koalaverse/sure
categorical-data diagnostics ordinal-regression residuals
Last synced: 3 days ago
JSON representation
Surrogate residuals for cumulative link and general regression models in R
- Host: GitHub
- URL: https://github.com/koalaverse/sure
- Owner: koalaverse
- Created: 2017-07-02T12:47:28.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2020-02-04T19:14:45.000Z (over 5 years ago)
- Last Synced: 2024-10-28T17:32:29.483Z (7 months ago)
- Topics: categorical-data, diagnostics, ordinal-regression, residuals
- Language: R
- Homepage: https://koalaverse.github.io/sure/index.html
- Size: 10.1 MB
- Stars: 9
- Watchers: 6
- Forks: 2
- Open Issues: 17
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
output:
md_document:
variant: markdown_github
---```{r setup, echo = FALSE}
knitr::opts_chunk$set(
cache = TRUE,
collapse = TRUE,
comment = "#>",
fig.align = "center",
fig.path = "man/figures/README-"
)
```# sure: Surrogate Residuals
[](https://travis-ci.org/koalaverse/sure)
[](https://ci.appveyor.com/project/koalaverse/sure)
[](https://codecov.io/gh/koalaverse/sure)## Overview
An R package for constructing **SU**rrogate-based **RE**siduals and diagnostics for ordinal and general regression models; based on the approach described in [Dungang and Zhang (2017)](http://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1292915?journalCode=uasa20).
## Installation
The `sure` package is [currently listed on CRAN](https://CRAN.R-project.org/package=sure) and can easily be installed:
```r
# Install from CRAN (recommended)
install.packages("sure")
# Alternatively, install the development version from GitHub
if (!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("koalaverse/sure")
```## References
Liu, D. and Zhang, H. Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach.
*Journal of the American Statistical Association* (accepted). URL
http://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1292915?journalCode=uasa20Greenwell, B.M., McCarthy, A.J., Boehmke, B.C. & Dungang, L. (2018) "Residuals and diagnostics for binary and ordinal regression models: An introduction to the sure package." The R Journal (pre-print). URL https://journal.r-project.org/archive/2018/RJ-2018-004/index.html