Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/koaning/scikit-lego
Extra blocks for scikit-learn pipelines.
https://github.com/koaning/scikit-lego
common-sense machine-learning scikit-learn
Last synced: 4 days ago
JSON representation
Extra blocks for scikit-learn pipelines.
- Host: GitHub
- URL: https://github.com/koaning/scikit-lego
- Owner: koaning
- License: mit
- Created: 2019-01-21T15:30:15.000Z (almost 6 years ago)
- Default Branch: main
- Last Pushed: 2024-12-30T11:26:00.000Z (12 days ago)
- Last Synced: 2024-12-31T14:07:11.383Z (11 days ago)
- Topics: common-sense, machine-learning, scikit-learn
- Language: Python
- Homepage: https://koaning.github.io/scikit-lego/
- Size: 28.5 MB
- Stars: 1,291
- Watchers: 22
- Forks: 119
- Open Issues: 38
-
Metadata Files:
- Readme: docs/README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-list - scikit-lego - Extra blocks for scikit-learn pipelines. (Machine Learning Framework / General Purpose Framework)
- awesome-python-machine-learning-resources - GitHub - 9% open · ⏱️ 18.08.2022): (Sklearn实用程序)
- StarryDivineSky - koaning/scikit-lego - lego是一个为 scikit-learn 提供额外功能的 Python 库,它包含自定义的转换器、度量指标和模型,旨在简化机器学习工作流程。该库提供各种数据集加载器、数据处理工具、虚拟模型和线性模型,例如用于公平性约束的 DemographicParityClassifier,以及用于时间序列分析的 add_lags 函数。你可以像使用 scikit-learn 一样使用 scikit-lego 中的组件,通过 pip 或 conda 安装,并参考其文档了解更多信息。 (其他_机器学习与深度学习)
README
# Docs readme
The docs folder contains the documentation for the scikit-lego package.
The documentation is generated using [Material for MkDocs][mkdocs-material], its extensions and a few plugins.
In particular the `mkdocstrings-python` is used for API rendering.## Render locally
To render the documentation locally, you can run the following command from the root of the repository:
```console
make docs
```Then the documentation page will be available at [localhost][localhost].
## Remark
The majority of code and code generate plots in the documentation is generated using the scripts in the `docs/_scripts` folder,
and accessed via the [pymdown snippets][pymdown-snippets] extension.To generate the plots from scratch it is enough to run the following command from the root of the repository:
```console
cd docs
make generate-all
```which will run all the scripts and save results in the `docs/_static` folder.
[mkdocs-material]: https://squidfunk.github.io/mkdocs-material/
[pymdown-snippets]: https://facelessuser.github.io/pymdown-extensions/extensions/snippets/
[localhost]: http://localhost:8000/