https://github.com/koba-jon/pytorch_cpp
Deep Learning sample programs using PyTorch in C++
https://github.com/koba-jon/pytorch_cpp
anomaly-detection autoencoder convolutional-autoencoder cpp dagmm dcgan deep-learning dimensionality-reduction generative-modeling image-to-image-translation libtorch linux multiclass-classification object-detection pix2pix pytorch semantic-segmentation u-net vae yolo
Last synced: 14 days ago
JSON representation
Deep Learning sample programs using PyTorch in C++
- Host: GitHub
- URL: https://github.com/koba-jon/pytorch_cpp
- Owner: koba-jon
- License: mit
- Created: 2020-03-23T05:00:08.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2025-12-24T03:58:50.000Z (about 1 month ago)
- Last Synced: 2025-12-24T21:19:16.499Z (about 1 month ago)
- Topics: anomaly-detection, autoencoder, convolutional-autoencoder, cpp, dagmm, dcgan, deep-learning, dimensionality-reduction, generative-modeling, image-to-image-translation, libtorch, linux, multiclass-classification, object-detection, pix2pix, pytorch, semantic-segmentation, u-net, vae, yolo
- Language: C++
- Homepage:
- Size: 251 MB
- Stars: 306
- Watchers: 13
- Forks: 58
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ๐ฅ PyTorch C++ Samples ๐ฅ
[]()
[]()
[]()
[]()


## ๐ Quick Start (Details: Library, Run)
Requirements: `LibTorch`, `OpenCV`, `OpenMP`, `Boost`, `Gnuplot`, `libpng/png++/zlib`
### 1. Git Clone
~~~
$ git clone https://github.com/koba-jon/pytorch_cpp.git
$ cd pytorch_cpp
$ sudo apt install g++-8
~~~
### 2. Run
**(1) Change Directory** (Model: AE1d)
~~~
$ cd Dimensionality_Reduction/AE1d
~~~
**(2) Build**
~~~
$ mkdir build
$ cd build
$ cmake ..
$ make -j4
$ cd ..
~~~
**(3) Dataset Setting** (Dataset: Normal Distribution Dataset)
~~~
$ cd datasets
$ git clone https://huggingface.co/datasets/koba-jon/normal_distribution_dataset
$ ln -s normal_distribution_dataset/NormalDistribution ./NormalDistribution
$ cd ..
~~~
**(4) Training**
~~~
$ sh scripts/train.sh
~~~
**(5) Test**
~~~
$ sh scripts/test.sh
~~~
## ๐ Updates (MM/DD/YYYY)
01/22/2026: Release of `v2.10.0`
12/22/2025: Implementation of `AdaIN`
12/20/2025: Implementation of `NST`
12/06/2025: Release of `v2.9.1.4`
12/01/2025: Release of `v2.9.1.3`
12/01/2025: Implementation of `PatchCore`
11/29/2025: Release of `v2.9.1.2`
11/29/2025: Implementation of `PaDiM`
11/27/2025: Implementation of `WideResNet`
11/27/2025: Release of `v2.9.1.1`
See more...
11/24/2025: Implementation of `ESRGAN`
11/21/2025: Implementation of `SRGAN`
11/19/2025: Implementation of `DiT`
11/14/2025: Release of `v2.9.1`
11/01/2025: Implementation of `NeRF` and `3DGS`
10/16/2025: Release of `v2.9.0`
10/16/2025: Implementation of `PixelSNAIL-Gray` and `PixelSNAIL-RGB`
10/14/2025: Implementation of `YOLOv8`
10/13/2025: Implementation of `YOLOv5`
10/09/2025: Implementation of `RF2d`
10/08/2025: Implementation of `FM2d`
10/08/2025: Implementation of `LDM`
10/04/2025: Implementation of `Glow`
10/01/2025: Implementation of `Real-NVP2d`
09/28/2025: Implementation of `Planar-Flow2d` and `Radial-Flow2d`
09/25/2025: Release of `v2.8.0.2`
09/22/2025: Implementation of `PixelCNN-Gray` and `PixelCNN-RGB`
09/18/2025: Implementation of `VQ-VAE-2`
09/16/2025: Implementation of `VQ-VAE`
09/14/2025: Implementation of `PNDM2d`
09/14/2025: Release of `v2.8.0.1`
09/12/2025: Implementation of `SimCLR`
09/11/2025: Implementation of `MAE`
09/10/2025: Implementation of EMA for `DDPM2d` and `DDIM2d`
09/08/2025: Implementation of `EfficientNet`
09/07/2025: Implementation of `CycleGAN`
09/05/2025: Implementation of `ViT`
09/04/2025: Release of `v2.8.0`
09/04/2025: Implementation of `DDIM2d`
09/04/2025: Implementation of `DDPM2d`
06/27/2023: Release of `v2.0.1`
06/27/2023: Create the heatmap for Anomaly Detection
05/07/2023: Release of `v2.0.0`
03/01/2023: Release of `v1.13.1`
09/12/2022: Release of `v1.12.1`
08/04/2022: Release of `v1.12.0`
03/18/2022: Release of `v1.11.0`
02/10/2022: Release of `v1.10.2`
02/09/2022: Implementation of `YOLOv3`
01/09/2022: Release of `v1.10.1`
01/09/2022: Fixed execution error in test on CPU package
11/12/2021: Release of `v1.10.0`
09/27/2021: Release of `v1.9.1`
09/27/2021: Support for using different devices between training and test
09/06/2021: Improved accuracy of time measurement using GPU
06/19/2021: Release of `v1.9.0`
03/29/2021: Release of `v1.8.1`
03/18/2021: Implementation of `Discriminator` from DCGAN
03/17/2021: Implementation of `AE1d`
03/16/2021: Release of `v1.8.0`
03/15/2021: Implementation of `YOLOv2`
02/11/2021: Implementation of `YOLOv1`
01/21/2021: Release of `v1.7.1`
10/30/2020: Release of `v1.7.0`
10/04/2020: Implementation of `Skip-GANomaly2d`
10/03/2020: Implementation of `GANomaly2d`
09/29/2020: Implementation of `EGBAD2d`
09/28/2020: Implementation of `AnoGAN2d`
09/27/2020: Implementation of `SegNet`
09/26/2020: Implementation of `DAE2d`
09/13/2020: Implementation of `ResNet`
09/07/2020: Implementation of `VGGNet`
09/05/2020: Implementation of `AlexNet`
09/02/2020: Implementation of `WAE2d GAN` and `WAE2d MMD`
08/30/2020: Release of `v1.6.0`
06/26/2020: Implementation of `DAGMM2d`
06/26/2020: Release of `v1.5.1`
06/26/2020: Implementation of `VAE2d` and `DCGAN`
06/01/2020: Implementation of `Pix2Pix`
05/29/2020: Implementation of `U-Net Classification`
05/26/2020: Implementation of `U-Net Regression`
04/24/2020: Release of `v1.5.0`
03/23/2020: Implementation of `AE2d`
## ๐๏ธ Implementation
### ๐ Multiclass Classification
Category
Model
Paper
Conference/Journal
Code
CNNs
AlexNet
A. Krizhevsky et al.
NeurIPS 2012
AlexNet
VGGNet
K. Simonyan et al.
ICLR 2015
VGGNet
ResNet
K. He et al.
CVPR 2016
ResNet
WideResNet
S. Zagoruyko et al.
arXiv 2016
WideResNet
Discriminator
A. Radford et al.
ICLR 2016
Discriminator
EfficientNet
M. Tan et al.
ICML 2019
EfficientNet
Transformers
Vision Transformer
A. Dosovitskiy et al.
ICLR 2021
ViT
### ๐ฝ Dimensionality Reduction
Model
Paper
Conference/Journal
Code
Autoencoder
G. E. Hinton et al.
Science 2006
AE1d
AE2d
Denoising Autoencoder
P. Vincent et al.
ICML 2008
DAE2d
### ๐จ Generative Modeling
Category
Model
Paper
Conference/Journal
Code
VAEs
Variational Autoencoder
D. P. Kingma et al.
ICLR 2014
VAE2d
Wasserstein Autoencoder
I. Tolstikhin et al.
ICLR 2018
WAE2d GAN
WAE2d MMD
VQ-VAE
A. v. d. Oord et al.
NeurIPS 2017
VQ-VAE
VQ-VAE-2
A. Razavi et al.
NeurIPS 2019
VQ-VAE-2
GANs
DCGAN
A. Radford et al.
ICLR 2016
DCGAN
Flows
Planar Flow
D. Rezende et al.
ICML 2015
Planar-Flow2d
Radial Flow
D. Rezende et al.
ICML 2015
Radial-Flow2d
Real NVP
L. Dinh et al.
ICLR 2017
Real-NVP2d
Glow
D. P. Kingma et al.
NeurIPS 2018
Glow
Diffusion Models
DDPM
J. Ho et al.
NeurIPS 2020
DDPM2d
DDIM
J. Song et al.
ICLR 2021
DDIM2d
PNDM
L. Liu et al.
ICLR 2022
PNDM2d
LDM
R. Rombach et al.
CVPR 2022
LDM
Diffusion Transformer
W. Peebles et al.
ICCV 2023
DiT
Flow Matching
Flow Matching
Y. Lipman et al.
ICLR 2023
FM2d
Rectified Flow
X. Liu et al.
ICLR 2023
RF2d
Autoregressive Models
PixelCNN
A. v. d. Oord et al.
ICML 2016
PixelCNN-Gray
PixelCNN-RGB
PixelSNAIL
X. Chen et al.
ICML 2018
PixelSNAIL-Gray
PixelSNAIL-RGB
### ๐ผ๏ธ Image-to-Image Translation
Model
Paper
Conference/Journal
Code
U-Net
O. Ronneberger et al.
MICCAI 2015
U-Net Regression
Pix2Pix
P. Isola et al.
CVPR 2017
Pix2Pix
CycleGAN
J.-Y. Zhu et al.
ICCV 2017
CycleGAN
### ๐ Super Resolution
Model
Paper
Conference/Journal
Code
SRGAN
C. Ledig et al.
CVPR 2017
SRGAN
ESRGAN
X. Wang et al.
ECCV 2018
ESRGAN
### ๐๏ธ Style Transfer
Model
Paper
Conference/Journal
Code
Neural Style Transfer
L. A. Gatys et al.
CVPR 2016
NST
Adaptive Instance Normalization
X. Huang et al.
ICCV 2017
AdaIN
### ๐งฉ Semantic Segmentation
Model
Paper
Conference/Journal
Code
SegNet
V. Badrinarayanan et al.
CVPR 2015
SegNet
U-Net
O. Ronneberger et al.
MICCAI 2015
U-Net Classification
### ๐ฏ Object Detection
Model
Paper
Conference/Journal
Code
YOLOv1
J. Redmon et al.
CVPR 2016
YOLOv1
YOLOv2
J. Redmon et al.
CVPR 2017
YOLOv2
YOLOv3
J. Redmon et al.
arXiv 2018
YOLOv3
YOLOv5
Ultralytics
-
YOLOv5
YOLOv8
Ultralytics
-
YOLOv8
### ๐ง Representation Learning
Model
Paper
Conference/Journal
Code
SimCLR
T. Chen et al.
ICML 2020
SimCLR
Masked Autoencoder
K. He et al.
CVPR 2022
MAE
### ๐ View Synthesis
Model
Paper
Conference/Journal
Code
Neural Radiance Field
B. Mildenhall et al.
ECCV 2020
NeRF
3D Gaussian Splatting
B. Kerbl et al.
SIGGRAPH 2023
3DGS
### ๐จ Anomaly Detection
Model
Paper
Conference/Journal
Code
AnoGAN
T. Schlegl et al.
IPMI 2017
AnoGAN2d
DAGMM
B. Zong et al.
ICLR 2018
DAGMM2d
EGBAD
H. Zenati et al.
ICLR Workshop 2018
EGBAD2d
GANomaly
S. Akรงay et al.
ACCV 2018
GANomaly2d
Skip-GANomaly
S. Akรงay et al.
IJCNN 2019
Skip-GANomaly2d
PaDiM
T. Defard et al.
ICPR Workshops 2020
PaDiM
PatchCore
K. Roth et al.
CVPR 2022
PatchCore
## ๐ฆ Requirement (Library)
Details
### 1. PyTorch C++
Please select the environment to use as follows on PyTorch official.
PyTorch official : https://pytorch.org/
***
PyTorch Build : Stable (2.10.0)
Your OS : Linux
Package : LibTorch
Language : C++ / Java
Run this Command : Download here (cxx11 ABI)
CUDA 12.6 : https://download.pytorch.org/libtorch/cu126/libtorch-shared-with-deps-2.10.0%2Bcu126.zip
CUDA 12.8 : https://download.pytorch.org/libtorch/cu128/libtorch-shared-with-deps-2.10.0%2Bcu128.zip
CUDA 13.0 : https://download.pytorch.org/libtorch/cu130/libtorch-shared-with-deps-2.10.0%2Bcu130.zip
CPU : https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-2.10.0%2Bcpu.zip
***
### 2. OpenCV
version : 3.0.0 or more
This is used for pre-processing and post-processing.
Please refer to other sites for more detailed installation method.
### 3. OpenMP
This is used to load data in parallel.
(It may be installed on standard Linux OS.)
### 4. Boost
This is used for command line arguments, etc.
~~~
$ sudo apt install libboost-dev libboost-all-dev
~~~
### 5. Gnuplot
This is used to display loss graph.
~~~
$ sudo apt install gnuplot
~~~
### 6. libpng/png++/zlib
This is used to load and save index-color image in semantic segmentation.
~~~
$ sudo apt install libpng-dev libpng++-dev zlib1g-dev
~~~
## ๐ Preparation (Run)
Details
### 1. Git Clone
~~~
$ git clone https://github.com/koba-jon/pytorch_cpp.git
$ cd pytorch_cpp
~~~
### 2. Path Setting
~~~
$ vi utils/CMakeLists.txt
~~~
Please change the 4th line of "CMakeLists.txt" according to the path of the directory "libtorch".
The following is an example where the directory "libtorch" is located directly under the directory "HOME".
~~~
3: # LibTorch
4: set(LIBTORCH_DIR $ENV{HOME}/libtorch)
5: list(APPEND CMAKE_PREFIX_PATH ${LIBTORCH_DIR})
~~~
### 3. Compiler Install
If you don't have g++ version 8 or above, install it.
~~~
$ sudo apt install g++-8
~~~
### 4. Execution
Please move to the directory of each model and refer to "README.md".
## ๐ ๏ธ Utility
Details
### 1. Making Original Dataset
Please create a link for the original dataset.
The following is an example of "AE2d" using "celebA" Dataset.
~~~
$ cd Dimensionality_Reduction/AE2d/datasets
$ ln -s ./celebA_org
~~~
You should substitute the path of dataset for "".
Please make sure you have training or test data directly under "".
~~~
$ vi ../../../scripts/hold_out.sh
~~~
Please edit the file for original dataset.
~~~
#!/bin/bash
SCRIPT_DIR=$(cd $(dirname $0); pwd)
python3 ${SCRIPT_DIR}/hold_out.py \
--input_dir "celebA_org" \
--output_dir "celebA" \
--train_rate 9 \
--valid_rate 1
~~~
By running this file, you can split it into training and validation data.
~~~
$ sudo apt install python3 python3-pip
$ pip3 install natsort
$ sh ../../../scripts/hold_out.sh
$ cd ../../..
~~~
### 2. Data Input System
There are transform, dataset and dataloader for data input in this repository.
It corresponds to the following source code in the directory, and we can add new function to the source code below.
- transforms.cpp
- transforms.hpp
- datasets.cpp
- datasets.hpp
- dataloader.cpp
- dataloader.hpp
### 3. Check Progress
There are a feature to check progress for training in this repository.
We can watch the number of epoch, loss, time and speed in training.

It corresponds to the following source code in the directory.
- progress.cpp
- progress.hpp
### 4. Monitoring System
There are monitoring system for training in this repository.
We can watch output image and loss graph.
The feature to watch output image is in the "samples" in the directory "checkpoints" created during training.
The feature to watch loss graph is in the "graph" in the directory "checkpoints" created during training.

It corresponds to the following source code in the directory.
- visualizer.cpp
- visualizer.hpp
## โ๏ธ License
Details
You can feel free to use all source code in this repository.
(Click [here](LICENSE) for details.)
But if you exploit external libraries (e.g. redistribution), you should be careful.
At a minimum, the license notation at the following URL is required.
In addition, third party copyrights belong to their respective owners.
- PyTorch
Official : https://pytorch.org/
License : https://github.com/pytorch/pytorch/blob/master/LICENSE
- OpenCV
Official : https://opencv.org/
License : https://opencv.org/license/
- OpenMP
Official : https://www.openmp.org/
License : https://gcc.gnu.org/onlinedocs/
- Boost
Official : https://www.boost.org/
License : https://www.boost.org/users/license.html
- Gnuplot
Official : http://www.gnuplot.info/
License : https://sourceforge.net/p/gnuplot/gnuplot-main/ci/master/tree/Copyright
- libpng/png++/zlib
Official (libpng) : http://www.libpng.org/pub/png/libpng.html
License (libpng) : http://www.libpng.org/pub/png/src/libpng-LICENSE.txt
Official (png++) : https://www.nongnu.org/pngpp/
License (png++) : https://www.nongnu.org/pngpp/license.html
Official (zlib) : https://zlib.net/
License (zlib) : https://zlib.net/zlib_license.html
## ๐ Conclusion
PyTorch is famous as a kind of Deep Learning Frameworks.
Among them, Python source code is overflowing on the Web, so we can easily write the source code of Deep Learning in Python.
However, there is very little source code written in C++ of compiler language.
I hope this repository will help many programmers by providing PyTorch sample programs written in C++.
If you have any problems with the source code of this repository, please feel free to "issue".
Let's have a good development and research life!