Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kohlerhector/ibmdp-py
Implementation of Iterative Bounding Markov Decision Processes (Topin et. al. 2021)
https://github.com/kohlerhector/ibmdp-py
reinforcement-learning
Last synced: about 8 hours ago
JSON representation
Implementation of Iterative Bounding Markov Decision Processes (Topin et. al. 2021)
- Host: GitHub
- URL: https://github.com/kohlerhector/ibmdp-py
- Owner: KohlerHECTOR
- Created: 2024-07-22T14:11:42.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-07-23T10:23:40.000Z (4 months ago)
- Last Synced: 2024-07-23T17:18:17.654Z (4 months ago)
- Topics: reinforcement-learning
- Language: Python
- Homepage: https://arxiv.org/abs/2102.13045
- Size: 2.93 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Iterative Bounding Markov Decision Processes
Implementation of [IBMDPs](https://arxiv.org/abs/2102.13045).
Just copy the ```gymnasium``` environment from here [ibmdp](ibmdp/ibmdp.py).```python
from stable_baselines3 import PPO
from gymnasium import make
from gymnasium.wrappers.time_limit import TimeLimit
from ibmdp import IBMDPenv = make("CartPole-v1")
env = IBMDP(env, zeta=0, info_gathering_actions=[(0,0)])
env = TimeLimit(env, 1000)model = PPO("MlpPolicy", env, verbose=1)
model.learn(1e5)
```