Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/koichiyasuoka/supar-kanbun
Tokenizer POS-tagger and Dependency-parser for Classical Chinese
https://github.com/koichiyasuoka/supar-kanbun
ancient-chinese classical-chinese literary-chinese nlp
Last synced: about 2 months ago
JSON representation
Tokenizer POS-tagger and Dependency-parser for Classical Chinese
- Host: GitHub
- URL: https://github.com/koichiyasuoka/supar-kanbun
- Owner: KoichiYasuoka
- License: mit
- Created: 2021-12-16T10:18:11.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-06-02T09:02:42.000Z (7 months ago)
- Last Synced: 2024-11-16T00:41:50.773Z (about 2 months ago)
- Topics: ancient-chinese, classical-chinese, literary-chinese, nlp
- Language: Jupyter Notebook
- Homepage:
- Size: 627 MB
- Stars: 12
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
[![Current PyPI packages](https://badge.fury.io/py/suparkanbun.svg)](https://pypi.org/project/suparkanbun/)
# SuPar-Kanbun
Tokenizer, POS-Tagger and Dependency-Parser for Classical Chinese Texts (漢文/文言文) with [spaCy](https://spacy.io), [Transformers](https://huggingface.co/transformers/) and [SuPar](https://github.com/yzhangcs/parser).
## Basic usage
```py
>>> import suparkanbun
>>> nlp=suparkanbun.load()
>>> doc=nlp("不入虎穴不得虎子")
>>> print(type(doc))>>> print(suparkanbun.to_conllu(doc))
# text = 不入虎穴不得虎子
1 不 不 ADV v,副詞,否定,無界 Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No
2 入 入 VERB v,動詞,行為,移動 _ 0 root _ Gloss=enter|SpaceAfter=No
3 虎 虎 NOUN n,名詞,主体,動物 _ 4 nmod _ Gloss=tiger|SpaceAfter=No
4 穴 穴 NOUN n,名詞,固定物,地形 Case=Loc 2 obj _ Gloss=cave|SpaceAfter=No
5 不 不 ADV v,副詞,否定,無界 Polarity=Neg 6 advmod _ Gloss=not|SpaceAfter=No
6 得 得 VERB v,動詞,行為,得失 _ 2 parataxis _ Gloss=get|SpaceAfter=No
7 虎 虎 NOUN n,名詞,主体,動物 _ 8 nmod _ Gloss=tiger|SpaceAfter=No
8 子 子 NOUN n,名詞,人,関係 _ 6 obj _ Gloss=child|SpaceAfter=No>>> import deplacy
>>> deplacy.render(doc)
不 ADV <════╗ advmod
入 VERB ═══╗═╝═╗ ROOT
虎 NOUN <╗ ║ ║ nmod
穴 NOUN ═╝<╝ ║ obj
不 ADV <════╗ ║ advmod
得 VERB ═══╗═╝<╝ parataxis
虎 NOUN <╗ ║ nmod
子 NOUN ═╝<╝ obj
````suparkanbun.load()` has two options `suparkanbun.load(BERT="roberta-classical-chinese-base-char",Danku=False)`. With the option `Danku=True` the pipeline tries to segment sentences automatically. Available `BERT` options are:
* `BERT="roberta-classical-chinese-base-char"` utilizes [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char) (default)
* `BERT="roberta-classical-chinese-large-char"` utilizes [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char)
* `BERT="guwenbert-base"` utilizes [GuwenBERT-base](https://huggingface.co/ethanyt/guwenbert-base)
* `BERT="guwenbert-large"` utilizes [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large)
* `BERT="sikubert"` utilizes [SikuBERT](https://huggingface.co/SIKU-BERT/sikubert)
* `BERT="sikuroberta"` utilizes [SikuRoBERTa](https://huggingface.co/SIKU-BERT/sikuroberta)## Installation for Linux
```sh
pip3 install suparkanbun --user
```## Installation for Cygwin64
Make sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-wheel` `gcc-g++` `mingw64-x86_64-gcc-g++` `git` `curl` `make` `cmake` packages, and then:
```sh
curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh
pip3.7 install suparkanbun
```## Installation for Jupyter Notebook (Google Colaboratory)
```py
!pip install suparkanbun
```Try [notebook](https://colab.research.google.com/github/KoichiYasuoka/SuPar-Kanbun/blob/main/suparkanbun.ipynb) for Google Colaboratory.
## Author
Koichi Yasuoka (安岡孝一)
## Reference
Koichi Yasuoka, Christian Wittern, Tomohiko Morioka, Takumi Ikeda, Naoki Yamazaki, Yoshihiro Nikaido, Shingo Suzuki, Shigeki Moro, Kazunori Fujita: [Designing Universal Dependencies for Classical Chinese and Its Application](http://id.nii.ac.jp/1001/00216242/), Journal of Information Processing Society of Japan, Vol.63, No.2 (February 2022), pp.355-363.