Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/koide3/gtsam_points
A collection of GTSAM factors and optimizers for point cloud SLAM
https://github.com/koide3/gtsam_points
bundle-adjustment continuous-time cuda factor-graph gpu gtsam kdtree localization mapping point-cloud registration slam voxelmap
Last synced: 2 days ago
JSON representation
A collection of GTSAM factors and optimizers for point cloud SLAM
- Host: GitHub
- URL: https://github.com/koide3/gtsam_points
- Owner: koide3
- License: mit
- Created: 2024-06-24T04:08:00.000Z (7 months ago)
- Default Branch: master
- Last Pushed: 2025-01-14T16:02:40.000Z (12 days ago)
- Last Synced: 2025-01-18T01:05:38.101Z (9 days ago)
- Topics: bundle-adjustment, continuous-time, cuda, factor-graph, gpu, gtsam, kdtree, localization, mapping, point-cloud, registration, slam, voxelmap
- Language: C++
- Homepage:
- Size: 9.9 MB
- Stars: 235
- Watchers: 9
- Forks: 28
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# gtsam_points
This is a collection of [GTSAM](https://gtsam.org/) factors and optimizers for range-based SLAM.
Tested on Ubuntu 22.04 / 24.04 and CUDA 12.2, and NVIDIA Jetson Orin with **GTSAM 4.2a9**.
[![DOI](https://zenodo.org/badge/819211095.svg)](https://zenodo.org/doi/10.5281/zenodo.13378351) [![Doc](https://img.shields.io/badge/API_list-Doxygen-blue)](https://koide3.github.io/gtsam_points/doc_cpp/index.html) [![Build](https://github.com/koide3/gtsam_points/actions/workflows/build.yml/badge.svg)](https://github.com/koide3/gtsam_points/actions/workflows/build.yml)
## Factors
### Scan Matching Factors
- **IntegratedICPFactor & IntegratedPointToPlaneICPFactor**
The conventional point-to-point and point-to-plane ICP [[1]](#ICP).
- **IntegratedGICPFactor**
Generalized ICP based on the distribution-to-distribution distance [[2]](#GICP).
- **IntegratedVGICPFactor**
GICP with voxel-based data association and multi-distribution-correspondence [[3]](#VGICP1)[[4]](#VGICP2).
- **IntegratedVGICPFactorGPU**
GPU implementation of VGICP [[3]](#VGICP1)[[4]](#VGICP2).
To enable this factor, set ```-DBUILD_WITH_CUDA=ON```.
- **IntegratedLOAMFactor**
Matching cost factor based on the combination of point-to-plane and point-to-edge distances [[5]](#LOAM)[[6]](#LEGO).### Colored Scan Matching Factors
- **IntegratedColorConsistencyFactor**
Photometric ICP error [[7]](#COLORED).
- **IntegratedColoredGICPFactor**
Photometric ICP error + GICP geometric error [[2]](#GICP)[[7]](#COLORED).### Continuous-time ICP Factors
- **IntegratedCT_ICPFactor**
Continuous Time ICP Factor [[8]](#CTICP).
- **IntegratedCT_GICPFactor**
Continuous Time ICP with GICP's D2D matching cost [[2]](#GICP)[[8]](#CTICP).### Bundle Adjustment Factors
- **PlaneEVMFactor and EdgeEVMFactor**
Bundle adjustment factor based on Eigenvalue minimization [[9]](#BA_EVM).
- **LsqBundleAdjustmentFactor**
Bundle adjustment factor based on EVM and EF optimal condition satisfaction [[10]](#BA_LSQ).## Optimizers for GPU Factors
All the following optimizers were derived from the implementations in GTSAM.
- **LevenbergMarquardtOptimizerExt**
- **ISAM2Ext**
- **IncrementalFixedLagSmootherExt**## Nearest Neighbor Search
- **KdTree**
KdTree with parallel tree construction. Derived from [nanoflann](https://github.com/jlblancoc/nanoflann).
- **IncrementalVoxelMap**
Incremental voxel-based nearest neighbor search (iVox) [[11]](#IVOX).
- **IncrementalCovarianceVoxelMap**
Incremental voxelmap with online normal and covariance estimation.## Continuous-Time Trajectory (Under development)
- **B-Spline**
Cubic B-Spline-based interpolation and linear acceleration and angular velocity expressions [[12]](#BSPLINE_D).
- **ContinuousTrajectory**
Cubic B-Spline-based continuous trajectory representation for offline batch optimization.## Installation
### Install from source
```bash
# Install gtsam
git clone https://github.com/borglab/gtsam
cd gtsam
git checkout 4.2a9mkdir build && cd build
cmake .. \
-DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF \
-DGTSAM_BUILD_TESTS=OFF \
-DGTSAM_WITH_TBB=OFF \
-DGTSAM_BUILD_WITH_MARCH_NATIVE=OFFmake -j$(nproc)
sudo make install# [optional] Install iridescence visualization library
# This is required for only demo programs
sudo apt install -y libglm-dev libglfw3-dev libpng-dev
git clone https://github.com/koide3/iridescence --recursive
mkdir iridescence/build && cd iridescence/build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
sudo make install## Build gtsam_points
git clone https://github.com/koide3/gtsam_points
mkdir gtsam_points/build && cd gtsam_points/build
cmake .. -DCMAKE_BUILD_TYPE=Release# Optional cmake arguments
# cmake .. \
# -DBUILD_DEMO=OFF \
# -DBUILD_TESTS=OFF \
# -DBUILD_WITH_CUDA=OFF \
# -DBUILD_WITH_MARCH_NATIVE=OFFmake -j$(nproc)
sudo make install
```### Install from [PPA](https://github.com/koide3/ppa) [AMD64, ARM64]
#### Setup PPA
##### Ubuntu 24.04
```bash
curl -s --compressed "https://koide3.github.io/ppa/ubuntu2404/KEY.gpg" | gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/koide3_ppa.gpg >/dev/null
echo "deb [signed-by=/etc/apt/trusted.gpg.d/koide3_ppa.gpg] https://koide3.github.io/ppa/ubuntu2404 ./" | sudo tee /etc/apt/sources.list.d/koide3_ppa.list
```##### Ubuntu 22.04
```bash
curl -s --compressed "https://koide3.github.io/ppa/ubuntu2204/KEY.gpg" | gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/koide3_ppa.gpg >/dev/null
echo "deb [signed-by=/etc/apt/trusted.gpg.d/koide3_ppa.gpg] https://koide3.github.io/ppa/ubuntu2204 ./" | sudo tee /etc/apt/sources.list.d/koide3_ppa.list
```##### Ubuntu 20.04
```bash
curl -s --compressed "https://koide3.github.io/ppa/ubuntu2004/KEY.gpg" | gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/koide3_ppa.gpg >/dev/null
echo "deb [signed-by=/etc/apt/trusted.gpg.d/koide3_ppa.gpg] https://koide3.github.io/ppa/ubuntu2004 ./" | sudo tee /etc/apt/sources.list.d/koide3_ppa.list
```#### Install GTSAM and gtsam_points
##### Without CUDA
```bash
sudo apt update && sudo apt install -y libgtsam-points-dev
```##### With CUDA 12.2
```bash
sudo apt update && sudo apt install -y libgtsam-points-cuda12.2-dev
```##### With CUDA 12.5
```bash
sudo apt update && sudo apt install -y libgtsam-points-cuda12.5-dev
```## Demo
```bash
cd gtsam_points
./build/demo_matching_cost_factors
./build/demo_bundle_adjustment
./build/demo_continuous_time
./build/demo_continuous_trajectory
./build/demo_colored_registration
```## Videos
- [Multi-scan registration of 5 frames (= A graph with 10 registration factors)](https://youtu.be/HCXCWlx_VOM)
- [Bundle adjustment factor](https://youtu.be/tuDV0GCOZXg)
- [Continuous-time ICP factor](https://youtu.be/Xv2-qDlzQYM)
- [Colored ICP factor](https://youtu.be/xEQmiFV79LU)
- [Incremental voxel mapping and normal estimation](https://youtu.be/gDiKqQDc7yo)
- [SE3 BSpline interpolation](https://youtu.be/etAI8go3b8U)## License
This library is released under the MIT license.
## Citation
```
@software{gtsam_points,
author = {Kenji Koide},
title = {gtsam_points : A collection of GTSAM factors and optimizers for point cloud SLAM},
month = Aug,
year = 2024,
publisher = {Zenodo},
version = {1.0.4},
doi = {10.5281/zenodo.13378352},
url = {https://github.com/koide3/gtsam_points)}}
}
```## Dependencies
- [Eigen](https://eigen.tuxfamily.org/index.php)
- [nanoflann](https://github.com/jlblancoc/nanoflann)
- [GTSAM](https://gtsam.org/)
- [optional] [OpenMP](https://www.openmp.org/)
- [optional] [CUDA](https://developer.nvidia.com/cuda-toolkit)
- [optional] [iridescence](https://github.com/koide3/iridescence)## Disclaimer
The test data in ```data``` directory are generated from [The KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/) and [The Newer College Dataset](https://ori-drs.github.io/newer-college-dataset/). Because they employ ```Creative Commons BY-NC-SA License 3.0 and 4.0```, the test data must not be used for commercial purposes.
## References
[1] Zhang, "Iterative Point Matching for Registration of Free-Form Curve", IJCV1994
[2] Segal et al., "Generalized-ICP", RSS2005
[3] Koide et al., "Voxelized GICP for Fast and Accurate 3D Point Cloud Registration", ICRA2021
[4] Koide et al., "Globally Consistent 3D LiDAR Mapping with GPU-accelerated GICP Matching Cost Factors", RA-L2021
[5] Zhang and Singh, "Low-drift and real-time lidar odometry and mapping", Autonomous Robots, 2017
[6] Tixiao and Brendan, "LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain", IROS2018
[7] Park et al., "Colored Point Cloud Registration Revisited", ICCV2017
[8] Bellenbach et al., "CT-ICP: Real-time Elastic LiDAR Odometry with Loop Closure", 2021
[9] Liu and Zhang, "BALM: Bundle Adjustment for Lidar Mapping", IEEE RA-L, 2021
[10] Huang et al, "On Bundle Adjustment for Multiview Point Cloud Registration", IEEE RA-L, 2021
[11] Bai et al., "Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial Odometry Using Parallel Sparse Incremental Voxels", IEEE RA-L, 2022
[12] Sommer et al., "Efficient Derivative Computation for Cumulative B-Splines on Lie Groups", CVPR2020