Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/koishi70/Style_Migration_For_Artistic_Font_With_CNN
基于卷积神经网络的风格迁移,制造出带有艺术风格的字体(艺术字),部分效果可达PS水平,可以辅助设计人员做设计;Convolutional neural network based style migration to create a font with artistic style (WordArt), some effects up to PhotoShop level, it can assist designers to do design
https://github.com/koishi70/Style_Migration_For_Artistic_Font_With_CNN
Last synced: 2 months ago
JSON representation
基于卷积神经网络的风格迁移,制造出带有艺术风格的字体(艺术字),部分效果可达PS水平,可以辅助设计人员做设计;Convolutional neural network based style migration to create a font with artistic style (WordArt), some effects up to PhotoShop level, it can assist designers to do design
- Host: GitHub
- URL: https://github.com/koishi70/Style_Migration_For_Artistic_Font_With_CNN
- Owner: koishi70
- License: mit
- Created: 2018-06-03T15:58:06.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-07-13T05:04:16.000Z (over 6 years ago)
- Last Synced: 2024-08-03T09:12:27.044Z (6 months ago)
- Language: Python
- Homepage:
- Size: 5.86 MB
- Stars: 225
- Watchers: 8
- Forks: 50
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-github-star - Style_Migration_For_Artistic_Font_With_CNN
README
# Style Migration For Artistic Font With CNN
基于卷积神经网络的风格迁移,超越艺术字
===
使用方法很简单,只需要输入:
python.exe neural_style_transfer.py "风格图片所在目录" "输出文件夹"
--chars 花 # 要生成的文字,支持一次输入多个文字
--pictrue_size 300 # 生成图片大小
--background_color (0,0,0) # 文字图片中背景的颜色
--text_color (255,255,255) # 文字图片中文字的颜色
--iter 50 # 迭代次数,一般50代左右就行
--smooth_times 20 # 文字图片是否进行模糊化处理
--noise 10 # 文字图片加入随机噪声的等级
--image_enhance True # 生成图片是否进行增强,包括色度,亮度,锐度增强
--font_name 宋体 # 文字字体,支持宋体,楷体,黑体,仿宋,等线
--reverse_color False # True-黑纸白字,False-白纸黑字,默认白纸黑字
--output_per_iter 2 # 每隔多少次迭代输出一张图片
--image_input_mode one_pic # 输入的风格图片允许使用一下mode: 'one_pic:一张风格图片','one_pic_T:一张风格图片,但是这张图片经过旋转90度后当作第二张,特别适合汉字的横竖笔画','two_pic:两张风格图片'
--style_reference_image2_path # 第二张风格图片的位置,没有第二张不填
--two_style_k 0.9 # 两张图片的相对权重,第一张*k+第二张*(1-k)## 一些使用的例子
单一风格:
"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\python.exe" "E:\学习\大三下\人工智能导论\风格转移字体\neural_style_transfer.py" "E:\学习\大三下\人工智能导论\风格转移字体\style\bamboo\5.jpg" E:\学习\大三下\人工智能导论\风格转移字体\输出\ --pictrue_size 300 --background_color (255,255,255) --text_color (0,0,0) --iter 30 --chars 竹 --smooth_times 20 --noise 10 --image_enhance True --image_input_mode one_pic两个风格:
"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\python.exe" "E:\学习\大三下\人工智能导论\风格转移字体\neural_style_transfer.py" "E:\学习\大三下\人工智能导论\风格转移字体\style\stone\2.jpg" E:\学习\大三下\人工智能导论\风格转移字体\输出\ --pictrue_size 300 --background_color (255,255,255) --text_color (0,0,0) --iter 50 --chars 石 --smooth_times 20 --noise 10 --image_enhance True --image_input_mode two_pic --style_reference_image2_path "E:\学习\大三下\人工智能导论\风格转移字体\style\stone\3.jpg" --two_style_k 0.6# 7.13更新
##### 1.更新了使用例子
##### 2.代码稍作调整## 6.13更新
##### 1.支持两张风格图片,使用第一张*k+第二张*(1-k),可以平滑调节两张图片的风格过渡。
##### 2.支持调节随机噪音的强度,为图片加上“noise×图片边长”个噪点。
##### 3.精细调参,三层卷积层的权重改为10:1:1,颜色更艳丽。## 一些说明
神经网络基于[keras](https://github.com/keras-team/keras/blob/master/examples/neural_style_transfer.py)官方的风格迁移的例子,经过一定的调整loss函数和调参后得到最适合于艺术风格字体的代码。
调整包括:
##### 1.加入生成文字图片的方法,以及提供一系列图片生成相关接口,便于您第一时间修改结果
##### 2.修改了loss函数,经过大量实验,确定使用keras提供的VGG19网络的'block1_conv1','block2_conv1','block3_conv1'三层作为风格损失,去除内容损失
##### 3.加入一些图片的增强方法,使得结果更加色彩丰富
##### 4.在style文件夹下提供了一系列图片供您探索
##### 4.运行需要Keras支持,建议使用GPU运算,在 Nvidia GeForce GTX 1050 Ti (4 GB)上,一次迭代大约3s,一张图片耗时2-3min
## 下面给出一些例子,在example文件夹下有其对应的风格图片
![花](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E8%8A%B1_%E4%BB%A3%E6%95%B0_49.png)
![雨](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E9%9B%A8_%E4%BB%A3%E6%95%B0_49.png)
![竹](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E7%AB%B9_%E4%BB%A3%E6%95%B0_49.png)
![雾](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E9%9B%BE_%E4%BB%A3%E6%95%B0_49.png)
![墨](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E5%A2%A8_%E4%BB%A3%E6%95%B0_49.png)
![木](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E6%9C%A8_%E4%BB%A3%E6%95%B0_49.png)
![火](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E7%81%AB_%E4%BB%A3%E6%95%B0_49.png)
![星](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E6%98%9F_%E4%BB%A3%E6%95%B0_49.png)
![石](https://github.com/yuweiming70/Style_Migration_For_Artistic_Font_With_CNN/blob/master/example/%E7%9F%B3_%E4%BB%A3%E6%95%B0_150.png)